COMPLEXITY OF DNA REPAIR MECHANISMS AND EMERGING TRENDS IN SAFEGUARDING GENETIC INTEGRITY

Authors

  • M KHAN Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan Author
  • MZ HAIDER Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan Author
  • A SAMI Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan Author

DOI:

https://doi.org/10.64013/bbasrjlifess.v2023i1.7

Keywords:

DNA repair, cellular safeguards, Homologous Recombination, Base Excision Repair, UV-induced

Abstract

DNA repair mechanisms are the cellular safeguards that maintain the integrity of our genetic blueprint, ensuring that the information encoded within the DNA molecule remains intact. This review explores the complex DNA repair mechanism, providing insight into the essential mechanisms that rectify different forms of DNA damage. From the nuanced correction of single-base lesions to the intricate coordination of double-strand break repair, the exploration navigates through the varied pathways cells utilize to defend against the continual threats to their genetic material. Major subjects addressed encompass Base Excision Repair (BER), Nucleotide Excision Repair (NER), Homologous Recombination (HR), and Non-Homologous End Joining (NHEJ). We unravel the mechanisms, proteins, and regulatory factors that govern these pathways, each tailored to address specific DNA damage, from chemical modifications to UV-induced thymine dimers and double-strand breaks. In an era of rapidly advancing biotechnology, we highlight emerging trends and future directions in DNA repair research, including using CRISPR-based gene editing techniques and developing small molecules that modulate repair pathways for therapeutic purposes.

Downloads

Download data is not yet available.

References

Ahmad, S., Tan, M., and Hamid, S. (2023). DNA repair mechanisms: Exploring potentials of nutraceutical. Journal of Functional Foods 101, 105415. DOI: https://doi.org/10.1016/j.jff.2023.105415

Ahmed, M. B., Alghamdi, A. A., Islam, S. U., Ahsan, H., and Lee, Y. S. (2023). The complex roles of DNA repair pathways, inhibitors, hyperthermia, and contact inhibition in cell cycle halts. Mini Reviews in Medicinal Chemistry 23, 514-529. DOI: https://doi.org/10.2174/1389557522666220826141837

Almas, M. H., Shah, R. A., Tahir, S. M. H., Manzoor, M., Shafiq, M., Shah, M. H., Hashmi, M. M., Ali, M., Bhatti, M. H. T., and Sami, A. (2023). The Effect of Substrate, Growth Condition and Nutrient Application Methods in Morphological and Commercial Attributes of Hybrid Rose (Rosa indica L.) Cv. Kardinal. Journal of Applied Research in Plant Sciences 4, 356-362. DOI: https://doi.org/10.38211/joarps.2023.04.01.44

Awwad, S. W., Serrano-Benitez, A., Thomas, J. C., Gupta, V., and Jackson, S. P. (2023). Revolutionizing DNA repair research and cancer therapy with CRISPR–Cas screens. Nature Reviews Molecular Cell Biology, 1-18. DOI: https://doi.org/10.1038/s41580-022-00571-x

Bai, P., Fan, T., Sun, G., Wang, X., Zhao, L., and Zhong, R. (2023). The dual role of DNA repair protein MGMT in cancer prevention and treatment. DNA repair, 103449. DOI: https://doi.org/10.1016/j.dnarep.2023.103449

Birkisdóttir, M. B., Van’t Sant, L. J., Brandt, R., Barnhoorn, S., Hoeijmakers, J. H., Vermeij, W. P., and Jaarsma, D. (2023). Purkinje-cell-specific DNA repair-deficient mice reveal that dietary restriction protects neurons by cell-intrinsic preservation of genomic health. Frontiers in Aging Neuroscience 14, 1095801. DOI: https://doi.org/10.3389/fnagi.2022.1095801

Bujarrabal-Dueso, A., Sendtner, G., Meyer, D. H., Chatzinikolaou, G., Stratigi, K., Garinis, G. A., and Schumacher, B. (2023). The DREAM complex functions as conserved master regulator of somatic DNA-repair capacities. Nature Structural & Molecular Biology 30, 475-488. DOI: https://doi.org/10.1038/s41594-023-00942-8

Catalano, M., Generali, D., Gatti, M., Riboli, B., Paganini, L., Nesi, G., and Roviello, G. (2023). DNA repair deficiency as circulating biomarker in prostate cancer. Frontiers in Oncology 13, 1115241. DOI: https://doi.org/10.3389/fonc.2023.1115241

Chuang, T.-W., Su, C.-H., Wu, P.-Y., Chang, Y.-M., and Tarn, W.-Y. (2023). LncRNA HOTAIRM1 functions in DNA double-strand break repair via its association with DNA repair and mRNA surveillance factors. Nucleic Acids Research 51, 3166-3184. DOI: https://doi.org/10.1093/nar/gkad143

Cinar, G., Agbektas, T., Huseynzada, A., Aliyeva, G., Aghayev, M., Hasanova, U., Kaya, S., Chtita, S., Nour, H., and Tas, A. (2023). Experimental and theoretical insights about the effect of some newly designed azomethine group‐contained macroheterocycles on oxidative stress and DNA repair gene profiles in neuroblastoma cell lines. Journal of Molecular Structure 1285, 135432. DOI: https://doi.org/10.1016/j.molstruc.2023.135432

Concannon, K., Morris, B. B., Gay, C. M., and Byers, L. A. (2023). Combining targeted DNA repair inhibition and immune-oncology approaches for enhanced tumor control. Molecular cell. DOI: https://doi.org/10.1016/j.molcel.2022.12.031

Frigerio, C., Di Nisio, E., Galli, M., Colombo, C. V., Negri, R., and Clerici, M. (2023). The chromatin landscape around DNA double-strand breaks in yeast and its influence on DNA repair pathway choice. International Journal of Molecular Sciences 24, 3248. DOI: https://doi.org/10.3390/ijms24043248

Garcia, M. A. O., Wood, E. A., Keck, J. L., and Cox, M. M. (2023). Interaction with single-stranded DNA-binding protein modulates Escherichia coli RadD DNA repair activities. Journal of Biological Chemistry 299. DOI: https://doi.org/10.1101/2022.12.05.519199

Guerra, G., Wendt, G., McCoy, L., Hansen, H. M., Molinaro, A. M., Rice, T., Guan, V., Capistrano, L., Hsieh, A., and Kalsi, V. (2023). The impact of germline variants in DNA repair pathways on survival and temozolomide toxicity in adults with glioma. medRxiv, 2023.10. 13.23296963.

Haider, M. Z., Sami, A., Shafiq, M., Anwar, W., Ali, S., Ali, Q., Muhammad, S., Manzoor, I., Shahid, M. A., and Ali, D. (2023). Genome-wide identification and in-silico expression analysis of carotenoid cleavage oxygenases gene family in Oryza sativa (rice) in response to abiotic stress. Frontiers in Plant Science 14. DOI: https://doi.org/10.3389/fpls.2023.1269995

Hao, Q., Zhan, C., Lian, C., Luo, S., Cao, W., Wang, B., Xie, X., Ye, X., Gui, T., and Voena, C. (2023). DNA repair mechanisms that promote insertion-deletion events during immunoglobulin gene diversification. Science Immunology 8, eade1167. DOI: https://doi.org/10.1126/sciimmunol.ade1167

Henpita, C., Vyas, R., Healy, C. L., Kieu, T. L., Gurkar, A. U., Yousefzadeh, M. J., Cui, Y., Lu, A., Angelini, L. A., and O'Kelly, R. D. (2023). Loss of DNA repair mechanisms in cardiac myocytes induce dilated cardiomyopathy. Aging cell, e13782. DOI: https://doi.org/10.1111/acel.13782

Hoeijmakers, J. (2001). DNA repair mechanisms. Maturitas 38, 17-22. DOI: https://doi.org/10.1016/S0378-5122(00)00188-2

Irfan, U., Haider, M., Shafiq, M., Sami, A., and Ali, Q. (2023). GENOME EDITING FOR EARLY AND LATE FLOWERING IN PLANTS. Bulletin of Biological and Allied Sciences Research 2023, 45-45. DOI: https://doi.org/10.54112/bbasr.v2023i1.45

Koeppel, J., Weller, J., Peets, E. M., Pallaseni, A., Kuzmin, I., Raudvere, U., Peterson, H., Liberante, F. G., and Parts, L. (2023). Prediction of prime editing insertion efficiencies using sequence features and DNA repair determinants. Nature Biotechnology, 1-11. DOI: https://doi.org/10.1038/s41587-023-01678-y

Kowalczykowski, S. C. (2015). An overview of the molecular mechanisms of recombinational DNA repair. Cold Spring Harbor Perspectives in Biology 7, a016410. DOI: https://doi.org/10.1101/cshperspect.a016410

Miser-Salihoglu, E., Demokan, S., Karanlik, H., Karahalil, B., Önder, S., Cömert, S., and Yardim-Akaydin, S. (2023). Investigation of mRNA expression levels of Tip60 and related DNA repair genes in molecular subtypes of breast cancer. Clinical Breast Cancer 23, 125-134. DOI: https://doi.org/10.1016/j.clbc.2022.10.012

Naz, S., Paritosh, K., Sanyal, P., Khan, S., Singh, Y., Varshney, U., and Nandicoori, V. K. (2023). GWAS and functional studies suggest a role for altered DNA repair in the evolution of drug resistance in Mycobacterium tuberculosis. Elife 12, e75860. DOI: https://doi.org/10.7554/eLife.75860

Pollina, E. A., Gilliam, D. T., Landau, A. T., Lin, C., Pajarillo, N., Davis, C. P., Harmin, D. A., Yap, E.-L., Vogel, I. R., and Griffith, E. C. (2023). A NPAS4–NuA4 complex couples synaptic activity to DNA repair. Nature 614, 732-741. DOI: https://doi.org/10.1038/s41586-023-05711-7

Sami, A., Haider, M. Z., Shafiq, M., Sadiq, S., and Ahmad, F. (2023). Genome-Wide Identification and In-silico Expression Analysis of CCO Gene Family in Sunflower (Helianthus annnus). DOI: https://doi.org/10.21203/rs.3.rs-3344879/v1

Senkal, N., Serin, I., Pehlivan, S., Pehlivan, M., Medetalibeyoglu, A., Cebeci, T., Konyaoglu, H., Oyacı, Y., Sayın, G. Y., and Isoglu-Alkac, U. (2023). The effect of DNA repair gene variants on COVID-19 disease: susceptibility, severity, and clinical course. Nucleosides, Nucleotides & Nucleic Acids, 1-15. DOI: https://doi.org/10.1080/15257770.2023.2172183

Wang, Y. H., and Sheetz, M. P. (2023). Transcription‐independent functions of p53 in DNA repair pathway selection. BioEssays 45, 2200122. DOI: https://doi.org/10.1002/bies.202200122

Weaver, J. W., Proshkin, S., Duan, W., Epshtein, V., Gowder, M., Bharati, B. K., Afanaseva, E., Mironov, A., Serganov, A., and Nudler, E. (2023). Control of transcription elongation and DNA repair by alarmone ppGpp. Nature Structural & Molecular Biology 30, 600-607. DOI: https://doi.org/10.1038/s41594-023-00948-2

Wu, H., Du, X., Xu, J., Kong, X., Li, Y., Liu, D., Yang, X., Ye, L., Ji, J., and Xi, Y. (2023). Multifunctional biomimetic nanoplatform based on photodynamic therapy and DNA repair intervention for the synergistic treatment of breast cancer. Acta Biomaterialia 157, 551-565. DOI: https://doi.org/10.1016/j.actbio.2022.12.010

Xu, Y., Nowsheen, S., and Deng, M. (2023). DNA repair deficiency regulates immunity response in cancers: molecular mechanism and approaches for combining immunotherapy. Cancers 15, 1619. DOI: https://doi.org/10.3390/cancers15051619

Yurchenko, A. A., Rajabi, F., Braz-Petta, T., Fassihi, H., Lehmann, A., Nishigori, C., Wang, J., Padioleau, I., Gunbin, K., and Panunzi, L. (2023). Genomic mutation landscape of skin cancers from DNA repair-deficient xeroderma pigmentosum patients. Nature Communications 14, 2561. DOI: https://doi.org/10.1038/s41467-023-38311-0

Downloads

Published

26-06-2023

How to Cite

KHAN, M., HAIDER, M., & SAMI, A. (2023). COMPLEXITY OF DNA REPAIR MECHANISMS AND EMERGING TRENDS IN SAFEGUARDING GENETIC INTEGRITY. Journal of Life and Social Sciences, 2023(1), 7. https://doi.org/10.64013/bbasrjlifess.v2023i1.7

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.