CHOKING CITY: LAHORE'S BATTLE WITH SMOG
Keywords:
Air Pollution, Smog Crisis, Environmental Laws, Renewable Energy, Agricultural Burning, Air Quality Monitoring, Emission Sources, Crop Residue Burning, Green TechnologiesAbstract
Lahore, one of the most industrialized and concreted cities of Pakistan with the highest population density is experiencing severe smog, which has created environmental problems. Scattered smoke is a result of vehicular exhaust, industrial discharges, and farming biomass burning, whereby meteorological and geographical conditions; especially from October to December make the situation worse. Air pollution in Lahore results in large health risks, including respiratory and cardiovascular ailments, foremost mental health disorders, and potential learning gaps with higher consequences on sensitive groups. The socio-economic impacts are also worst which include productivity loss, pressure on the health facilities, interruption of school sessions, and a drop in tourism. The poor are most heavily impacted, particularly those living close to industrial zones. There is also action taken to stop smog such as the Punjab Clean Air Action Plan and Lahore Smog Control Ordinance but the enforcement has been poor because of financial and infrastructural constraints. Awareness programmes and technology applications including those for air quality demonstrate a potential but challenges include; expensive and scarce resources. Strategies and tactics can consist of sharper regulation of emissions, the extension of the monitoring networks, the introduction of financial enticements and incentives for sustainable farming, and more extensive overall public awareness programs. The other important thing, which should be the activities of concern to help solve the problem, is cooperation with other countries and using their experience of how they manage to control air pollution successfully in other cities.
Downloads
References
Ahmad, N., Hussain, K., Ahmad, N., Khaleeq-ur-Rahman, M., Hussnainn, A. (2014). A study of concentration of Lahore (Pakistan) suspended particulates and their trace elemental loadings. World Appl. Sci. J. 32, 1952–1961. DOI:10.5829/idosi.wasj.2014.32.09.1128
Ali, K., Acharja, P., Trivedi, D.K., Kulkarni, R., Pithani, P., Safai, P.D., Chate, D.M., Ghude, S., Jenamani, R.K., Rajeevan, M. (2019). Charecterization and source identification of PM2.5 and its chemical and carbonaceous constituents during winter fog experiment 2015-16 at Indira Gandhi International Airport, Delhi. Sci. Total Environ, 662, 687–696. DOI: 10.1016/j.scitotenv.2019.01.285
Arbex, M.A., Santos, U.D.P., Martins, L.C., Saldiva, P.H.N., Pereira, L.A.A., Braga, A.L.F. (2012). Air pollution and the respiratory system. J. Bras. Pneumol. 38, 643–655. DOI: 10.1590/s1806-37132012000500015.
Bulbul, G., Shahid, I., Chishte, F., Shahid, M.Z., Hundal, R.A., Zahra, F., Shahzad, M.I. (2018). PM10 Sampling and AOD Trends during 2016 winter fog season in the Islamabad region. Aerosol Air Qual. Res. 18, 188–199. DOI:10.4209/aaqr.2017.01.0014.
Chauhan, A., Singh, R.P. (2020). Decline in PM2.5 concentrations over major cities around the world associated with COVID-19. Environ. Res. 187, 109634. DOI: 10.1016/j.envres.2020.109634.
Chen, Y., Ebenstein, A., Greenstone, M., Li, H. (2013). Evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai River policy. Proc. Natl. Acad. Sci. USA, 110, 12936–12941. Atmosphere 2021, 12, 1532 12 of 14. DOI: 10.1073/pnas.1300018110.
Daniels, M.J., Dominici, F., Samet, J.M., Zeger, S.L. (2000). Estimating particulate matter-mortality dose-response curves and threshold levels: An analysis of daily time series for the 20 largest US cities. Am. J. Epidemiol. 152, 397–406. DOI: 10.1093/aje/152.5.397.
Du, X., Jin, X., Zucker, N., Kennedy, R., Urpelainen, J. (2020). Transboundary air pollution from coal-fired power generation. J. Environ. Manag. 270, 110862. DOI: 10.1016/j.jenvman.2020.110862.
Gauderman, W.J. (2002). Sample size requirements for matched case-control studies of gene–environment interaction. Stat. Med. 21, 35–50. DOI: 10.1002/sim.973.
Gurjar, B.R., Ravindra, K., Nagpure, A.S. (2016). Air pollution trends over Indian megacities and their local-to-global implication. Atmos.Environ. 142, 475–495. DOI:10.1016/j.atmosenv.2016.06.030.
Hameed, S., Mirza, M.I., Ghauri, B.M., Siddiqui, Z.R., Javed, R., Khan, A.R., Rattigan, O.V., Qureshi, S., Husain, L. (2000). On the widespread winter fog in Northeastern Pakistan and India. Geophy. Res. Lett. 27, 1891–1894.
Hopke, P.K., Cohen, D.D., Begum, B.A., Biswas, S.K., Ni, B., Pandit, G.G., Santoso, M., Chung, Y., Davy, P., Markwitz, A., et al. (2008). Urban air quality in Asian region. Sci. Total Environ. 404, 103–112. DOI: 10.1016/j.scitotenv.2008.05.039.
Janssen, B.G., Godderis, L., Pieters, N., Poels, K., Kici ´ nski, M., Cuypers, A., Fierens, F., Penders, J., Plusquin, M., Gyselaers,W.,et al. (2013). Placental DNA hypomethylation in association with particulate air pollution in early life. Part. Fibre Toxicol. 10, 1–11. DOI: 10.1186/1743-8977-10-22.
Jung, C.R., Lin, Y.T., Hwang, B.F. (2013). Air pollution and newly diagnostic autism spectrum disorders: A population-based cohort study in Taiwan. PLoS ONE, 8, e75510. DOI: 10.1371/journal.pone.0075510.
Kampa, M., Castanas, E. (2008). Human Health effects of Air Pollution. Environ. Pollut. 151, 362-367. DOI: 10.1016/j.envpol.2007.06.012.
Kim, Y., Myung,W., Won, H.H., Shim, S., Jeon, H.J., Choi, J., Carroll, B.J., Kim, D.K. (2015). Association between air pollution and suicide in South Korea: A nationwide study. PLoS ONE, 10, e0117929. DOI: 10.1371/journal.pone.0117929.
Kioumourtzoglou, M.A., Schwartz, J.D., Weisskopf, M.G., Melly, S.J., Wang, Y., Dominici, F., Zanobetti, A. (2016). Long-term PM2.5 exposure and neurological hospital admissions in the northeastern United States. Environ. Health Perspect. 124, 23–29. DOI: 10.1289/ehp.1408973.
Kloog, I., Ridgway, B., Koutrakis, P., Coull, B.A., Schwartz, J.D. (2013). Long-and short-term exposure to PM2.5 and mortality: Using novel exposure models. Epidemiology, 24, 555. DOI: 10.1097/EDE.0b013e318294beaa.
Liu, T., Mickley, L.J., Gautam, R., Singh, M.K., De Fries, R.S., Marlier, M.E. (2021). Detection of delay in post-monsoon agricultural burning across Punjab, India: Potential drivers and consequences for air quality. Environment Research Letters. 16, 014014. DOI:10.1088/1748-9326/abcc28.
Malik, A., Islam, J., Zaib, G., Ashraf, M.H., Zahid, A., Rashid, A.R., Zia, T., Ali, Q. (2024a). Smog crisis in Lahore: evaluating air quality trends and public health implications. Bull. Biol. All. Sci. Res. 9: 87. doi: https://doi.org/10.54112/bbasr.v2024i1.87.
Malik, A., Islam, J., Zaib, G., Zahid, A., Rashid, A., & Zia, T. (2024b). interplay of smog and health conditions: a public health perspective on respiratory, hypertensive, and cardiovascular morbidity. Journal of Physical, Biomedical and Biological Sciences, 2024(1), 37. https://jpbab.com/index.php/home/article/view/37
Perez-Diaz, J.L., Ivanov, O., Peshev, Z., Alvarez-Valenzuela, M.A., Valiente-Blanco, I., Evgenieva, T., Dreischuh, T., Gueorguiev, O., Todorov, P.V., Vaseashta, A. (2017). Fogs: Physical basis, characteristic properties, and impacts on the environment and human health. Water, 9, 807. https://doi.org/10.3390/w9100807.
Pope, C.A., 3rd, Hansen, M.L., Long, R.W., Nielsen, K.R., Eatough, N.L., Wilson, W.E., Eatough, D.J. Ambient particulate air pollution, heart rate variability, and blood markers of inflammation in a panel of elderly subjects. Environ. Health Pers. 2004, 112, 339–345. DOI: 10.1289/ehp.6588.
Razzaq A, Zafar M.M, Zahra L.T, Qadir F, Qiao F, Ullah M.H, Shehzad S, Rasool G, Jiang X. (2024). Smog: Lahore needs global attention to fix it. Environmental Challenges, 16, 1-8. https://doi.org/10.1016/j.envc.2024.
Shrestha, S., Moore, G. A., & Peel, M. C. (2018). Trends in winter fog events in the Terai region of Nepal. Agricultural AND Forest Meteorology, 259. https://doi.org/10.1016/j.agrformet.2018.04.018
Sui, X., Zhang, J., Zhang, Q.I., Sun, S., Lei, R., Zhang, C., Cheng, H., Ding, L., Ding, R., Xiao, C., et al. (2021). The short-term effect of PM2.5/O3 on daily mortality from 2013 to 2018 in Fefei, China. Environ. Geochem. Health 43, 153–169. DOI: 10.1007/s10653-020-00689-x.
Tao, M., Chen, L., Xiong, X., Zhang, M., Ma, P., Tao, J.,Wang, Z. (2014). Formation process of the widespread extreme haze pollution over northern China in January 2013: Implications for regional air quality and climate. Atmos. Environ, 98, 417–425. DOI:10.1016/j.atmosenv.2014.09.026.
Tsai, S.S., Chang, C.C., Yang, C.Y. (2013). Fine particulate air pollution and hospital admissions for chronic obstructive pulmonary disease: A case-crossover study in Taipei. Int. J. Environ. Res. Public Health, 10, 6015–6026. doi: 10.3390/ijerph10116015.
Vega, E., Eidels, S., Ruiz, H., Lopez-Veneroni, D., Sosa, G., Gonzalez, E., Gasca, J., Mora, V., Reye, E., Sanchez-Reyna, G., et al. (2010). Particulate air pollution in Mexico City: A detailed view. Aerosol Air Qual. Res. 10, 193–211. https://doi.org/10.4209/aaqr.2009.06.0042 .
Zeng, Y., Cao, Y., Qiao, X., Seyler, B.C., Tang, Y. (2019). Air pollution reduction in China: Recent success but great challenge for the future. Sci. Total Environ. 663, 329–337. DOI: 10.1016/j.scitotenv.2019.01.262.
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2024 A MALIK, j ISLAM, G ZAIB, A ZAHID, AR RASHID, S KHAN (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.