PHYSIOLOGICAL, MORPHOLOGICAL AND PHYTOCHEMICAL RESPONSES OF MAIZE TO ABIOTIC RESPONSES

Authors

  • M ASHRAF Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan Author

Keywords:

maize, abiotic stress, climate change, drought, salt, heat

Abstract

This review paper thoroughly analyses maize's morphological, physiological, and phytochemical responses to different abiotic stressors. As a staple cereal crop of global importance, maize has several challenges that significantly impact its growth and yield, including salinity, drought, and extreme temperatures. Climate change will generally impact plants' abiotic stress tolerance mechanisms, and maize specifically, despite many unanswered questions. Despite this, it is still impossible to draw wide conclusions because plants react differently to various stresses at different times. The review synthesizes current knowledge on the morphological adaptations, encompassing changes in root architecture and leaf morphology, as strategies maize employs to navigate adverse environmental conditions. Additionally, the article examines the physiological responses of maize, shedding light on mechanisms that enhance stress tolerance, including adjustments in water use efficiency, pH and the activation of cellular protective pathways. Furthermore, the review delves into the dynamic alterations in phytochemical profiles, highlighting maize's capacity to synthesize secondary metabolites as part of its adaptive arsenal. This comprehensive exploration of maize's responses to abiotic stressors contributes valuable insights for researchers, breeders, and policymakers working towards developing resilient maize varieties and sustainable agricultural practices in an ever-changing environment.

Downloads

Download data is not yet available.

References

Abbas, M., Abdel-Lattif, H., and Shahba, M. (2021). Ameliorative effects of calcium sprays on yield and grain nutritional composition of maize (Zea mays L.) cultivars under drought stress. Agriculture 11, 285.

Abdelaziz, T. A. M. (2020). Effects of different fertilizers on growth and yield components of Maize (Zea mays L.), Sudan University of Science & Technology.

Abenavoli, M. R., Sorgonà, A., Albano, S., and Cacco, G. (2004). Coumarin differentially affects the morphology of different root types of maize seedlings. Journal of Chemical Ecology 30, 1871-1883.

Ahuja, I., de Vos, R. C., Bones, A. M., and Hall, R. D. (2010). Plant molecular stress responses face climate change. Trends in plant science 15, 664-674.

Alexandru, B., VÂRBAN, M. M. D. D. I., VÂRBAN, R., MOLDOVAN, C., and MUNTEAN, S. MAIZE (ZEA MAYS), A PROSPECTIVE MEDICINAL PLANT IN ROMANIA.

Ali, F., Ahsan, M., Ali, Q., and Kanwal, N. (2017). Phenotypic stability of Zea mays grain yield and its attributing traits under drought stress. Frontiers in plant science 8, 1397.

Ali, F., Kanwal, N., Ahsan, M., Ali, Q., Bibi, I., and Niazi, N. K. (2015). Multivariate analysis of grain yield and its attributing traits in different maize hybrids grown under heat and drought stress. Scientifica 2015.

Ali, M. L. (2016). Screening genetic variation in maize for deep root mass in greenhouse and its association with grain yield under water-stressed field conditions. Maydica 60, 1-13.

Ali, Q., Ahsan, M., Ali, F., Aslam, M., Khan, N. H., Munzoor, M., Mustafa, H. S. B., and Muhammad, S. (2013). Heritability, heterosis and heterobeltiosis studies for morphological traits of maize (Zea mays L.) seedlings. Advancements in Life sciences 1.

Ali, Q., Ahsan, M., Kanwal, N., Ali, F., Ali, A., Ahmed, W., Ishfaq, M., and Saleem, M. (2016). Screening for drought tolerance: comparison of maize hybrids under water deficit condition. Advancements in Life Sciences 3, 51-58.

Ali, Q., Ahsan, M., and Saleem, M. (2010a). Genetic variability and trait association in chickpea (Cicer arietinum L.). Electronic Journal of Plant Breeding 1, 328-333.

Ali, Q., Ahsan, M., Tahir, M. H. N., Elahi, M., Farooq, J., Waseem, M., and Sadique, M. (2011). Genetic variability for grain yield and quality traits in chickpea. International Journal of Agro-Veterinary and Medical Sciences 5, 201-208.

Ali, Q., Ali, A., Ahsan, M., Nasir, I. A., Abbas, H. G., and Ashraf, M. A. (2014). Line× Tester analysis for morpho-physiological traits of Zea mays L seedlings. Advancements in Life sciences 1, 242-253.

Ali, Q., and Malik, A. (2021). Genetic response of growth phases for abiotic environmental stress tolerance in cereal crop plants. Genetika 53, 419-456.

Ali, Q., Muhammad, A., and Farooq, J. (2010b). Genetic variability and trait association in chickpea (Cicer arietinum L.) genotypes at seedling stage. Electronic Journal of Plant Breeding 1, 334-341.

Aslam, M., Ibni Zamir, M. S., Afzal, I., and Yaseen, M. (2013). Morphological and physiological response of maize hybrids to potassium application under drought stress. Journal of Agricultural Research (03681157) 51.

Bariw, S. A., Kudadze, S., and Adzawla, W. (2020). Prevalence, effects and management of fall army worm in the Nkoranza South Municipality, Bono East region of Ghana. Cogent Food & Agriculture 6, 1800239.

Bassu, S., Brisson, N., Durand, J. L., Boote, K., Lizaso, J., Jones, J. W., Rosenzweig, C., Ruane, A. C., Adam, M., and Baron, C. (2014). How do various maize crop models vary in their responses to climate change factors? Global change biology 20, 2301-2320.

Benson, L. V. (2011). Factors controlling Pre-Columbian and early historic maize productivity in the American Southwest, part 1: The southern Colorado Plateau and Rio Grande regions. Journal of Archaeological Method and Theory 18, 1-60.

Bohnert, H. J., and Shen, B. (1998). Transformation and compatible solutes. Scientia horticulturae 78, 237-260.

Brevik, E. C. (2013). The potential impact of climate change on soil properties and processes and corresponding influence on food security. Agriculture 3, 398-417.

Cai, Q., Zhang, Y., Sun, Z., Zheng, J., Bai, W., Zhang, Y., Liu, Y., Feng, L., Feng, C., and Zhang, Z. (2017). Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize. Biogeosciences 14, 3851-3858.

Cairns, J. E., Sonder, K., Zaidi, P., Verhulst, N., Mahuku, G., Babu, R., Nair, S., Das, B., Govaerts, B., and Vinayan, M. (2012). Maize production in a changing climate: impacts, adaptation, and mitigation strategies. Advances in agronomy 114, 1-58.

Camacho, R., and Caraballo, D. (1994). Evaluation of morphological characteristics in Venezuelan maize (Zea mays L.) genotypes under drought stress. Scientia Agricola 51, 453-458.

Cambier, V., Hance, T., and de Hoffmann, E. (2000). Variation of DIMBOA and related compounds content in relation to the age and plant organ in maize. Phytochemistry 53, 223-229.

Comas, L. H., Trout, T. J., DeJonge, K. C., Zhang, H., and Gleason, S. M. (2019). Water productivity under strategic growth stage-based deficit irrigation in maize. Agricultural water management 212, 433-440.

Deryng, D., Conway, D., Ramankutty, N., Price, J., and Warren, R. (2014). Global crop yield response to extreme heat stress under multiple climate change futures. Environmental Research Letters 9, 034011.

Dinesh, M. V., Simon, S., and Nagar, S. (2018). Biorational management of stem borer, Chilo partellus in maize. Journal of Pharmacognosy and Phytochemistry 7, 1142-1145.

Du Plessis, J. (2003). "Maize production," Department of Agriculture Pretoria, South Africa.

Elias, E. H., Flynn, R., Idowu, O. J., Reyes, J., Sanogo, S., Schutte, B. J., Smith, R., Steele, C., and Sutherland, C. (2019). Crop vulnerability to weather and climate risk: Analysis of interacting systems and adaptation efficacy for sustainable crop production. Sustainability 11, 6619.

Farooq, M., Aziz, T., Wahid, A., Lee, D.-J., and Siddique, K. H. (2009). Chilling tolerance in maize: agronomic and physiological approaches. Crop and Pasture Science 60, 501-516.

Farooq, M., Hussain, M., Wakeel, A., and Siddique, K. H. (2015). Salt stress in maize: effects, resistance mechanisms, and management. A review. Agronomy for Sustainable Development 35, 461-481.

Fracheboud, Y., and Leipner, J. (2003). The application of chlorophyll fluorescence to study light, temperature, and drought stress. In "Practical applications of chlorophyll fluorescence in plant biology", pp. 125-150. Springer.

García-Lara, S., and Serna-Saldivar, S. O. (2019). Corn history and culture. Corn, 1-18.

Gouinguené, S. P., and Turlings, T. C. (2002). The effects of abiotic factors on induced volatile emissions in corn plants. Plant physiology 129, 1296-1307.

Habben, J. E., Bao, X., Bate, N. J., DeBruin, J. L., Dolan, D., Hasegawa, D., Helentjaris, T. G., Lafitte, R. H., Lovan, N., and Mo, H. (2014). Transgenic alteration of ethylene biosynthesis increases grain yield in maize under field drought‐stress conditions. Plant biotechnology journal 12, 685-693.

Hadiarto, T., and Tran, L.-S. P. (2011). Progress studies of drought-responsive genes in rice. Plant cell reports 30, 297-310.

Hallauer, A. R., and Carena, M. J. (2009). "Maize," Springer.

Hammer, G. L., Dong, Z., McLean, G., Doherty, A., Messina, C., Schussler, J., Zinselmeier, C., Paszkiewicz, S., and Cooper, M. (2009). Can changes in canopy and/or root system architecture explain historical maize yield trends in the US corn belt? Crop Science 49, 299-312.

Hochholdinger, F., Yu, P., and Marcon, C. (2018). Genetic control of root system development in maize. Trends in plant science 23, 79-88.

Hossain, A., Skalicky, M., Brestic, M., Maitra, S., Ashraful Alam, M., Syed, M. A., Hossain, J., Sarkar, S., Saha, S., and Bhadra, P. (2021). Consequences and mitigation strategies of abiotic stresses in wheat (Triticum aestivum L.) under the changing climate. Agronomy 11, 241.

Hu, X., Wu, L., Zhao, F., Zhang, D., Li, N., Zhu, G., Li, C., and Wang, W. (2015). Phosphoproteomic analysis of the response of maize leaves to drought, heat and their combination stress. Frontiers in plant science 6, 298.

Hund, A., Fracheboud, Y., Soldati, A., and Stamp, P. (2008). Cold tolerance of maize seedlings as determined by root morphology and photosynthetic traits. European Journal of Agronomy 28, 178-185.

Hussain, H. A., Men, S., Hussain, S., Zhang, Q., Ashraf, U., Anjum, S. A., Ali, I., and Wang, L. (2020). Maize tolerance against drought and chilling stresses varied with root morphology and antioxidative defense system. Plants 9, 720.

Iqra, L., Rashid, M. S., Ali, Q., Latif, I., and Mailk, A. (2020). Evaluation for Na+/K+ ratio under salt stress condition in wheat. Life Sci J 17, 43-47.

Jain, M., Kataria, S., Hirve, M., and Prajapati, R. (2019). Water deficit stress effects and responses in maize. Plant Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches, 129-151.

Kang, Y., Khan, S., and Ma, X. (2009). Climate change impacts on crop yield, crop water productivity and food security–A review. Progress in natural Science 19, 1665-1674.

Kaul, J., Jain, K., and Olakh, D. (2019). An overview on role of yellow maize in food, feed and nutrition security. International Journal of Current Microbiology and Applied Sciences 8, 3037-3048.

Kaur, G., Vikal, Y., Kaur, L., Kalia, A., Mittal, A., Kaur, D., and Yadav, I. (2021). Elucidating the morpho-physiological adaptations and molecular responses under long-term waterlogging stress in maize through gene expression analysis. Plant Science 304, 110823.

Khan, A., Ali, S., Shah, S. A., Khan, A., and Ullah, R. (2019). Impact of climate change on maize productivity in Khyber Pakhtunkhwa, Pakistan. Sarhad Journal of Agriculture 35, 594-601.

Kiran, A., Umesh, K., and Shankara, M. (2018). Growth and Instability in Agriculture-A case of maize production in India.

Kutschera, U., and Niklas, K. J. (2013). Cell division and turgor-driven stem elongation in juvenile plants: a synthesis. Plant Science 207, 45-56.

Langridge, P., and Fleury, D. (2011). Making the most of ‘omics’ for crop breeding. Trends in biotechnology 29, 33-40.

Li, Y., Tao, H., Zhang, B., Huang, S., and Wang, P. (2018). Timing of water deficit limits maize kernel setting in association with changes in the source-flow-sink relationship. Frontiers in plant science 9, 1326.

Liu, M., Sui, Y., Yu, C., Wang, X., Zhang, W., Wang, B., Yan, J., and Duan, L. (2023). Coronatine-Induced Maize Defense against Gibberella Stalk Rot by Activating Antioxidants and Phytohormone Signaling. Journal of Fungi 9, 1155.

Lone, A. A., Dar, Z. A., Gull, A., Gazal, A., Naseer, S., Khan, M. H., Ahangar, A., and Iqbal, A. M. (2021). Breeding maize for food and nutritional security. Cereal grains. London: IntechOpen, 39-54.

Lone, A. A., Khan, M. H., Dar, Z. A., and Wani, S. H. (2018). Breeding strategies for improving growth and yield under waterlogging conditions in maize: a review. Maydica 61, 11.

Lupini, A., Sorgona, A., Princi, M. P., Sunseri, F., and Abenavoli, M. R. (2016). Morphological and physiological effects of trans-cinnamic acid and its hydroxylated derivatives on maize root types. Plant Growth Regulation 78, 263-273.

Lynch, J. P. (2013). Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Annals of botany 112, 347-357.

Majid, M. U., Awan, M. F., Fatima, K., Tahir, M. S., Ali, Q., Rashid, B., Rao, A. Q., Nasir, I. A., and Husnain, T. (2017). Genetic resources of chili pepper (Capsicum annuum L.) against Phytophthora capsici and their induction through various biotic and abiotic factors. Cytology and Genetics 51, 296-304.

Mandal, S., Singh, V. K., Chaudhary, D., Kaur, A., Kumar, R., Panwar, A., Ojre, A., Singh, R. K., and Kaushik, P. (2023). From Grain to Gain: Revolutionizing Maize Nutrition.

Mangani, R., Tesfamariam, E. H., Bellocchi, G., and Hassen, A. (2018). Growth, development, leaf gaseous exchange, and grain yield response of maize cultivars to drought and flooding stress. Sustainability 10, 3492.

MANN, K. K. Health benefits of Maize phytochemicals. J. Appl. Soc. Sci 1, 107-114.

Miedema, P. (1982). The effects of low temperature on Zea mays. Advances in agronomy 35, 93-128.

Mohapatra, S., Ray, R. C., and Ramachandran, S. (2019). Bioethanol from biorenewable feedstocks: technology, economics, and challenges. In "Bioethanol production from food crops", pp. 3-27. Elsevier.

Moharramnejad, S., Sofalian, O., Valizadeh, M., Asgari, A., and Shiri, M. (2015). Proline, glycine betaine, total phenolics and pigment contents in response to osmotic stress in maize seedlings. Journal of bioscience & Biotechnology 4.

Moriondo, M., Giannakopoulos, C., and Bindi, M. (2011). Climate change impact assessment: the role of climate extremes in crop yield simulation. Climatic change 104, 679-701.

Mosa, K. A., Ismail, A., and Helmy, M. (2017). Introduction to plant stresses. Plant Stress Tolerance: An Integrated Omics Approach, 1-19.

Mueller, N. D., Gerber, J. S., Johnston, M., Ray, D. K., Ramankutty, N., and Foley, J. A. (2012). Closing yield gaps through nutrient and water management. Nature 490, 254-257.

Muhammad Aslam, M., Waseem, M., Jakada, B. H., Okal, E. J., Lei, Z., Saqib, H. S. A., Yuan, W., Xu, W., and Zhang, Q. (2022). Mechanisms of abscisic acid-mediated drought stress responses in plants. International journal of molecular sciences 23, 1084.

Naveed, M. T., Qurban, A., Muhammad, A., and Babar, H. (2012). Correlation and path coefficient analysis for various quantitative traits in chickpea (Cicer arietinum L.). International Journal for Agro Veterinary and Medical Sciences (IJAVMS) 6, 97-106.

Ong, C., and Baker, C. (1985). Temperature and leaf growth. Control of leaf growth, 175-200.

Panda, S. C. (2010). "Maize crop science," Agrobios (India).

Pasini, L., Bruschini, S., Bertoli, A., Mazza, R., Fracheboud, Y., and Marocco, A. (2005). Photosynthetic performance of cold‐sensitive mutants of maize at low temperature. Physiologia Plantarum 124, 362-370.

Peñuelas, J., and Staudt, M. (2010). BVOCs and global change. Trends in plant science 15, 133-144.

Potters, G., Pasternak, T. P., Guisez, Y., Palme, K. J., and Jansen, M. A. (2007). Stress-induced morphogenic responses: growing out of trouble? Trends in plant science 12, 98-105.

Prasad, T. K. (1996). Mechanisms of chilling‐induced oxidative stress injury and tolerance in developing maize seedlings: changes in antioxidant system, oxidation of proteins and lipids, and protease activities. The Plant Journal 10, 1017-1026.

Prasanna, B. (2016). Developing and deploying abiotic stress-tolerant maize varieties in the tropics: challenges and opportunities. Molecular Breeding for Sustainable Crop Improvement: Volume 2, 61-77.

Rahman, M. H. (2016). Exploring sustainability to feed the world in 2050. Journal of Food Microbiology 1.

Rajasheker, G., Jawahar, G., Jalaja, N., Kumar, S. A., Kumari, P. H., Punita, D. L., Karumanchi, A. R., Reddy, P. S., Rathnagiri, P., and Sreenivasulu, N. (2019). Role and regulation of osmolytes and ABA interaction in salt and drought stress tolerance. In "Plant signaling molecules", pp. 417-436. Elsevier.

Ramazan, S., Nazir, I., Yousuf, W., and John, R. (2022). Environmental stress tolerance in maize (Zea mays): role of polyamine metabolism. Functional Plant Biology 50, 85-96.

Ren, B., Zhang, J., Li, X., Fan, X., Dong, S., Liu, P., and Zhao, B. (2014). Effects of waterlogging on the yield and growth of summer maize under field conditions. Canadian Journal of plant science 94, 23-31.

Rouf Shah, T., Prasad, K., and Kumar, P. (2016). Maize—A potential source of human nutrition and health: A review. Cogent Food & Agriculture 2, 1166995.

Rubio, G., Sorgona, A., and Lynch, J. P. (2004). Spatial mapping of phosphorus influx in bean root systems using digital autoradiography. Journal of experimental botany 55, 2269-2280.

Saeed, M. S., and Saeed, A. (2020). Health benefits of maize crop-an overview. Curr Res Agric Farming 1, 5-8.

Salika, R., and Riffat, J. (2021). Abiotic stress responses in maize: a review. Acta Physiologiae Plantarum 43, 130.

Sánchez, B., Rasmussen, A., and Porter, J. R. (2014). Temperatures and the growth and development of maize and rice: a review. Global change biology 20, 408-417.

Sarwar, M., Anjum, S., Alam, M. W., Ali, Q., Ayyub, C., Haider, M. S., Ashraf, M. I., and Mahboob, W. (2022). Triacontanol regulates morphological traits and enzymatic activities of salinity affected hot pepper plants. Scientific Reports 12, 1-8.

Sarwar, M., Anjum, S., Ali, Q., Alam, M. W., Haider, M. S., and Mehboob, W. (2021). Triacontanol modulates salt stress tolerance in cucumber by altering the physiological and biochemical status of plant cells. Scientific reports 11, 1-10.

Searchinger, T., Hanson, C., Ranganathan, J., Lipinski, B., Waite, R., Winterbottom, R., Dinshaw, A., Heimlich, R., Boval, M., and Chemineau, P. (2014). "Creating a sustainable food future. A menu of solutions to sustainably feed more than 9 billion people by 2050. World resources report 2013-14: interim findings," World Resources Institute (WRI); World Bank Groupe-Banque Mondiale; United ….

Serna-Saldivar, S. O., Gutiérrez-Uribe, J. A., and García-Lara, S. (2015). Phytochemical profiles and nutraceutical properties of corn and wheat tortillas. In "Tortillas", pp. 65-96. Elsevier.

Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., and Savouré, A. (2015). Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of botany 115, 433-447.

Sravani, D., Guddeti, M., and Rajanikanth, E. (2021). Boquet Ears in Maize. Biotica Researh Today 3, 70-71.

Srivastava, J. P., Singh, P., Singh, V. P., and Bansal, R. (2010). Effect of waterlogging on carbon exchange rate, stomatal conductance and mineral nutrient status in maize and pigeonpea. Plant Stress 4, 94-99.

Sunoj, V. J., Shroyer, K. J., Jagadish, S. K., and Prasad, P. V. (2016). Diurnal temperature amplitude alters physiological and growth response of maize (Zea mays L.) during the vegetative stage. Environmental and Experimental Botany 130, 113-121.

Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., and Mittler, R. (2014). Abiotic and biotic stress combinations. New Phytologist 203, 32-43.

Tahjib-Ul-Arif, M., Siddiqui, M. N., Sohag, A. A. M., Sakil, M. A., Rahman, M. M., Polash, M. A. S., Mostofa, M. G., and Tran, L.-S. P. (2018). Salicylic acid-mediated enhancement of photosynthesis attributes and antioxidant capacity contributes to yield improvement of maize plants under salt stress. Journal of plant growth regulation 37, 1318-1330.

Tankem, T., Ngwasiri, P. N., Ambindei, W. A., Wingang, M. C., Ngwabie, N. M., Ngassoum, M. B., and Aba, E. R. (2023). Production and Evaluation of the Nutritional and Functional Qualities of “Adakwa” Enriched with Waste Biomass of Traditional Brewer’s Spent Grain as a Functional Staple Food. Advances in Chemical Engineering and Science 13, 265-288.

Thakur, P., Kumar, S., Malik, J. A., Berger, J. D., and Nayyar, H. (2010). Cold stress effects on reproductive development in grain crops: an overview. Environmental and Experimental Botany 67, 429-443.

Tiwari, Y. K., and Yadav, S. K. (2019). High temperature stress tolerance in maize (Zea mays L.): Physiological and molecular mechanisms. Journal of Plant Biology 62, 93-102.

Ujong, A. E., Aniefiok, I. E., and Onyekwe, J. C. (2023). Nutrient Composition and Sensory Properties of Breakfast Cereal Made from Yellow Maize and Enriched with Soybean and Groundnut Flours. Turkish Journal of Agriculture-Food Science and Technology 11, 651-656.

Vaughan, M. M., Block, A., Christensen, S. A., Allen, L. H., and Schmelz, E. A. (2018). The effects of climate change associated abiotic stresses on maize phytochemical defenses. Phytochemistry Reviews 17, 37-49.

Vaughan, M. M., Christensen, S., Schmelz, E. A., Huffaker, A., Mcauslane, H. J., Alborn, H. T., Romero, M., Allen, L. H., and Teal, P. E. (2015). Accumulation of terpenoid phytoalexins in maize roots is associated with drought tolerance. Plant, cell & environment 38, 2195-2207.

Vaughan, M. M., Huffaker, A., Schmelz, E. A., Dafoe, N. J., Christensen, S. A., McAuslane, H. J., Alborn, H. T., Allen, L. H., and Teal, P. E. (2016). Interactive effects of elevated [CO2] and drought on the maize phytochemical defense response against mycotoxigenic Fusarium verticillioides. PloS one 11, e0159270.

Venkateswarlu, B., and Shanker, A. K. (2011). Dryland agriculture: bringing resilience to crop production under changing climate. In "Crop stress and its management: Perspectives and strategies", pp. 19-44. Springer.

Vescio, R., Abenavoli, M. R., and Sorgonà, A. (2020). Single and combined abiotic stress in maize root morphology. Plants 10, 5.

Vinocur, B., and Altman, A. (2005). Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current opinion in biotechnology 16, 123-132.

Wang, Y., Sheng, D., Zhang, P., Dong, X., Yan, Y., Hou, X., Wang, P., and Huang, S. (2021). High temperature sensitivity of kernel formation in different short periods around silking in maize. Environmental and Experimental Botany 183, 104343.

Wani, A. B., Chadar, H., Wani, A. H., Singh, S., and Upadhyay, N. (2017). Salicylic acid to decrease plant stress. Environmental Chemistry Letters 15, 101-123.

Wheeler, T., and Von Braun, J. (2013). Climate change impacts on global food security. Science 341, 508-513.

Wijewardana, C., Henry, W. B., Hock, M. W., and Reddy, K. R. (2016). Growth and physiological trait variation among corn hybrids for cold tolerance. Canadian Journal of plant science 96, 639-656.

Xiao, J., and Bai, W. (2019). Bioactive phytochemicals. Critical Reviews in Food Science and Nutrition 59, 827-829.

Xu, H., Twine, T. E., and Girvetz, E. (2016). Climate change and maize yield in Iowa. PloS one 11, e0156083.

Zabed, H., Sahu, J., Suely, A., Boyce, A., and Faruq, G. (2017). Bioethanol production from renewable sources: Current perspectives and technological progress. Renewable and Sustainable Energy Reviews 71, 475-501.

Zhan, A., Schneider, H., and Lynch, J. P. (2015). Reduced lateral root branching density improves drought tolerance in maize. Plant physiology 168, 1603-1615.

Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., Huang, M., Yao, Y., Bassu, S., and Ciais, P. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of sciences 114, 9326-9331.

Zubair, M., Shakir, M., Ali, Q., Rani, N., Fatima, N., Farooq, S., Shafiq, S., Kanwal, N., Ali, F., and Nasir, I. A. (2016). Rhizobacteria and phytoremediation of heavy metals. Environmental Technology Reviews 5, 112-119.

Zulfiqar, F., Akram, N. A., and Ashraf, M. (2020). Osmoprotection in plants under abiotic stresses: New insights into a classical phenomenon. Planta 251, 1-17.

Downloads

Published

2023-12-16

How to Cite

ASHRAF, M. (2023). PHYSIOLOGICAL, MORPHOLOGICAL AND PHYTOCHEMICAL RESPONSES OF MAIZE TO ABIOTIC RESPONSES. Journal of Life and Social Sciences, 2023(1), 18. https://bbasrjlifess.com/index.php/home/article/view/18

Similar Articles

1-10 of 11

You may also start an advanced similarity search for this article.