PHYSIOLOGICAL, MORPHOLOGICAL AND PHYTOCHEMICAL RESPONSES OF MAIZE TO ABIOTIC RESPONSES
DOI:
https://doi.org/10.64013/bbasrjlifess.v2023i1.18Keywords:
Maize, Abiotic stress, climate change, drought, salt, heatAbstract
This review paper thoroughly analyses maize's morphological, physiological, and phytochemical responses to different abiotic stressors. As a staple cereal crop of global importance, maize has several challenges that significantly impact its growth and yield, including salinity, drought, and extreme temperatures. Climate change will generally impact plants' abiotic stress tolerance mechanisms, and maize specifically, despite many unanswered questions. Despite this, it is still impossible to draw wide conclusions because plants react differently to various stresses at different times. The review synthesizes current knowledge on the morphological adaptations, encompassing changes in root architecture and leaf morphology, as strategies maize employs to navigate adverse environmental conditions. Additionally, the article examines the physiological responses of maize, shedding light on mechanisms that enhance stress tolerance, including adjustments in water use efficiency, pH and the activation of cellular protective pathways. Furthermore, the review delves into the dynamic alterations in phytochemical profiles, highlighting maize's capacity to synthesize secondary metabolites as part of its adaptive arsenal. This comprehensive exploration of maize's responses to abiotic stressors contributes valuable insights for researchers, breeders, and policymakers working towards developing resilient maize varieties and sustainable agricultural practices in an ever-changing environment.
Downloads
References
Abbas, M., Abdel-Lattif, H., and Shahba, M. (2021). Ameliorative effects of calcium sprays on yield and grain nutritional composition of maize (Zea mays L.) cultivars under drought stress. Agriculture 11, 285. DOI: https://doi.org/10.3390/agriculture11040285
Abdelaziz, T. A. M. (2020). Effects of different fertilizers on growth and yield components of Maize (Zea mays L.), Sudan University of Science & Technology.
Abenavoli, M. R., Sorgonà, A., Albano, S., and Cacco, G. (2004). Coumarin differentially affects the morphology of different root types of maize seedlings. Journal of Chemical Ecology 30, 1871-1883. DOI: https://doi.org/10.1023/B:JOEC.0000042407.28560.bb
Ahuja, I., de Vos, R. C., Bones, A. M., and Hall, R. D. (2010). Plant molecular stress responses face climate change. Trends in plant science 15, 664-674. DOI: https://doi.org/10.1016/j.tplants.2010.08.002
Alexandru, B., VÂRBAN, M. M. D. D. I., Vârban, R., Moldovan, C., and Muntean, S. Maize (zea mays), a prospective medicinal plant in romania.
Ali, F., Ahsan, M., Ali, Q., and Kanwal, N. (2017). Phenotypic stability of Zea mays grain yield and its attributing traits under drought stress. Frontiers in plant science 8, 1397. DOI: https://doi.org/10.3389/fpls.2017.01397
Ali, F., Kanwal, N., Ahsan, M., Ali, Q., Bibi, I., and Niazi, N. K. (2015). Multivariate analysis of grain yield and its attributing traits in different maize hybrids grown under heat and drought stress. Scientifica 2015. DOI: https://doi.org/10.1155/2015/563869
Ali, M. L. (2016). Screening genetic variation in maize for deep root mass in greenhouse and its association with grain yield under water-stressed field conditions. Maydica 60, 1-13.
Ali, Q., Ahsan, M., Ali, F., Aslam, M., Khan, N. H., Munzoor, M., Mustafa, H. S. B., and Muhammad, S. (2013). Heritability, heterosis and heterobeltiosis studies for morphological traits of maize (Zea mays L.) seedlings. Advancements in Life sciences 1.
Ali, Q., Ahsan, M., Kanwal, N., Ali, F., Ali, A., Ahmed, W., Ishfaq, M., and Saleem, M. (2016). Screening for drought tolerance: comparison of maize hybrids under water deficit condition. Advancements in Life Sciences 3, 51-58.
Ali, Q., Ahsan, M., and Saleem, M. (2010a). Genetic variability and trait association in chickpea (Cicer arietinum L.). Electronic Journal of Plant Breeding 1, 328-333.
Ali, Q., Ahsan, M., Tahir, M. H. N., Elahi, M., Farooq, J., Waseem, M., and Sadique, M. (2011). Genetic variability for grain yield and quality traits in chickpea. International Journal of Agro-Veterinary and Medical Sciences 5, 201-208. DOI: https://doi.org/10.5455/ijavms.20110521104936
Ali, Q., Ali, A., Ahsan, M., Nasir, I. A., Abbas, H. G., and Ashraf, M. A. (2014). Line× Tester analysis for morpho-physiological traits of Zea mays L seedlings. Advancements in Life sciences 1, 242-253.
Ali, Q., and Malik, A. (2021). Genetic response of growth phases for abiotic environmental stress tolerance in cereal crop plants. Genetika 53, 419-456. DOI: https://doi.org/10.2298/GENSR2101419A
Ali, Q., Muhammad, A., and Farooq, J. (2010b). Genetic variability and trait association in chickpea (Cicer arietinum L.) genotypes at seedling stage. Electronic Journal of Plant Breeding 1, 334-341.
Aslam, M., Ibni Zamir, M. S., Afzal, I., and Yaseen, M. (2013). Morphological and physiological response of maize hybrids to potassium application under drought stress. Journal of Agricultural Research (03681157) 51.
Bariw, S. A., Kudadze, S., and Adzawla, W. (2020). Prevalence, effects and management of fall army worm in the Nkoranza South Municipality, Bono East region of Ghana. Cogent Food & Agriculture 6, 1800239. DOI: https://doi.org/10.1080/23311932.2020.1800239
Bassu, S., Brisson, N., Durand, J. L., Boote, K., Lizaso, J., Jones, J. W., Rosenzweig, C., Ruane, A. C., Adam, M., and Baron, C. (2014). How do various maize crop models vary in their responses to climate change factors? Global change biology 20, 2301-2320. DOI: https://doi.org/10.1111/gcb.12520
Benson, L. V. (2011). Factors controlling Pre-Columbian and early historic maize productivity in the American Southwest, part 1: The southern Colorado Plateau and Rio Grande regions. Journal of Archaeological Method and Theory 18, 1-60. DOI: https://doi.org/10.1007/s10816-010-9082-z
Bohnert, H. J., and Shen, B. (1998). Transformation and compatible solutes. Scientia horticulturae 78, 237-260. DOI: https://doi.org/10.1016/S0304-4238(98)00195-2
Brevik, E. C. (2013). The potential impact of climate change on soil properties and processes and corresponding influence on food security. Agriculture 3, 398-417. DOI: https://doi.org/10.3390/agriculture3030398
Cai, Q., Zhang, Y., Sun, Z., Zheng, J., Bai, W., Zhang, Y., Liu, Y., Feng, L., Feng, C., and Zhang, Z. (2017). Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize. Biogeosciences 14, 3851-3858. DOI: https://doi.org/10.5194/bg-14-3851-2017
Cairns, J. E., Sonder, K., Zaidi, P., Verhulst, N., Mahuku, G., Babu, R., Nair, S., Das, B., Govaerts, B., and Vinayan, M. (2012). Maize production in a changing climate: impacts, adaptation, and mitigation strategies. Advances in agronomy 114, 1-58. DOI: https://doi.org/10.1016/B978-0-12-394275-3.00006-7
Camacho, R., and Caraballo, D. (1994). Evaluation of morphological characteristics in Venezuelan maize (Zea mays L.) genotypes under drought stress. Scientia Agricola 51, 453-458. DOI: https://doi.org/10.1590/S0103-90161994000300012
Cambier, V., Hance, T., and de Hoffmann, E. (2000). Variation of DIMBOA and related compounds content in relation to the age and plant organ in maize. Phytochemistry 53, 223-229. DOI: https://doi.org/10.1016/S0031-9422(99)00498-7
Comas, L. H., Trout, T. J., DeJonge, K. C., Zhang, H., and Gleason, S. M. (2019). Water productivity under strategic growth stage-based deficit irrigation in maize. Agricultural water management 212, 433-440. DOI: https://doi.org/10.1016/j.agwat.2018.07.015
Deryng, D., Conway, D., Ramankutty, N., Price, J., and Warren, R. (2014). Global crop yield response to extreme heat stress under multiple climate change futures. Environmental Research Letters 9, 034011. DOI: https://doi.org/10.1088/1748-9326/9/3/034011
Dinesh, M. V., Simon, S., and Nagar, S. (2018). Biorational management of stem borer, Chilo partellus in maize. Journal of Pharmacognosy and Phytochemistry 7, 1142-1145.
Du Plessis, J. (2003). "Maize production," Department of Agriculture Pretoria, South Africa.
Elias, E. H., Flynn, R., Idowu, O. J., Reyes, J., Sanogo, S., Schutte, B. J., Smith, R., Steele, C., and Sutherland, C. (2019). Crop vulnerability to weather and climate risk: Analysis of interacting systems and adaptation efficacy for sustainable crop production. Sustainability 11, 6619. DOI: https://doi.org/10.3390/su11236619
Farooq, M., Aziz, T., Wahid, A., Lee, D.-J., and Siddique, K. H. (2009). Chilling tolerance in maize: agronomic and physiological approaches. Crop and Pasture Science 60, 501-516. DOI: https://doi.org/10.1071/CP08427
Farooq, M., Hussain, M., Wakeel, A., and Siddique, K. H. (2015). Salt stress in maize: effects, resistance mechanisms, and management. A review. Agronomy for Sustainable Development 35, 461-481. DOI: https://doi.org/10.1007/s13593-015-0287-0
Fracheboud, Y., and Leipner, J. (2003). The application of chlorophyll fluorescence to study light, temperature, and drought stress. In "Practical applications of chlorophyll fluorescence in plant biology", pp. 125-150. Springer. DOI: https://doi.org/10.1007/978-1-4615-0415-3_4
García-Lara, S., and Serna-Saldivar, S. O. (2019). Corn history and culture. Corn, 1-18. DOI: https://doi.org/10.1016/B978-0-12-811971-6.00001-2
Gouinguené, S. P., and Turlings, T. C. (2002). The effects of abiotic factors on induced volatile emissions in corn plants. Plant physiology 129, 1296-1307. DOI: https://doi.org/10.1104/pp.001941
Habben, J. E., Bao, X., Bate, N. J., DeBruin, J. L., Dolan, D., Hasegawa, D., Helentjaris, T. G., Lafitte, R. H., Lovan, N., and Mo, H. (2014). Transgenic alteration of ethylene biosynthesis increases grain yield in maize under field drought‐stress conditions. Plant biotechnology journal 12, 685-693. DOI: https://doi.org/10.1111/pbi.12172
Hadiarto, T., and Tran, L.-S. P. (2011). Progress studies of drought-responsive genes in rice. Plant cell reports 30, 297-310. DOI: https://doi.org/10.1007/s00299-010-0956-z
Hallauer, A. R., and Carena, M. J. (2009). "Maize," Springer. DOI: https://doi.org/10.1007/978-0-387-72297-9_1
Hammer, G. L., Dong, Z., McLean, G., Doherty, A., Messina, C., Schussler, J., Zinselmeier, C., Paszkiewicz, S., and Cooper, M. (2009). Can changes in canopy and/or root system architecture explain historical maize yield trends in the US corn belt? Crop Science 49, 299-312. DOI: https://doi.org/10.2135/cropsci2008.03.0152
Hochholdinger, F., Yu, P., and Marcon, C. (2018). Genetic control of root system development in maize. Trends in plant science 23, 79-88. DOI: https://doi.org/10.1016/j.tplants.2017.10.004
Hossain, A., Skalicky, M., Brestic, M., Maitra, S., Ashraful Alam, M., Syed, M. A., Hossain, J., Sarkar, S., Saha, S., and Bhadra, P. (2021). Consequences and mitigation strategies of abiotic stresses in wheat (Triticum aestivum L.) under the changing climate. Agronomy 11, 241. DOI: https://doi.org/10.3390/agronomy11020241
Hu, X., Wu, L., Zhao, F., Zhang, D., Li, N., Zhu, G., Li, C., and Wang, W. (2015). Phosphoproteomic analysis of the response of maize leaves to drought, heat and their combination stress. Frontiers in plant science 6, 298. DOI: https://doi.org/10.3389/fpls.2015.00298
Hund, A., Fracheboud, Y., Soldati, A., and Stamp, P. (2008). Cold tolerance of maize seedlings as determined by root morphology and photosynthetic traits. European Journal of Agronomy 28, 178-185. DOI: https://doi.org/10.1016/j.eja.2007.07.003
Hussain, H. A., Men, S., Hussain, S., Zhang, Q., Ashraf, U., Anjum, S. A., Ali, I., and Wang, L. (2020). Maize tolerance against drought and chilling stresses varied with root morphology and antioxidative defense system. Plants 9, 720. DOI: https://doi.org/10.3390/plants9060720
Iqra, L., Rashid, M. S., Ali, Q., Latif, I., and Mailk, A. (2020). Evaluation for Na+/K+ ratio under salt stress condition in wheat. Life Sci J 17, 43-47. DOI: https://doi.org/10.54112/bcsrj.v2020i1.16
Jain, M., Kataria, S., Hirve, M., and Prajapati, R. (2019). Water deficit stress effects and responses in maize. Plant Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches, 129-151. DOI: https://doi.org/10.1007/978-3-030-06118-0_5
Kang, Y., Khan, S., and Ma, X. (2009). Climate change impacts on crop yield, crop water productivity and food security–A review. Progress in natural Science 19, 1665-1674. DOI: https://doi.org/10.1016/j.pnsc.2009.08.001
Kaul, J., Jain, K., and Olakh, D. (2019). An overview on role of yellow maize in food, feed and nutrition security. International Journal of Current Microbiology and Applied Sciences 8, 3037-3048. DOI: https://doi.org/10.20546/ijcmas.2019.802.356
Kaur, G., Vikal, Y., Kaur, L., Kalia, A., Mittal, A., Kaur, D., and Yadav, I. (2021). Elucidating the morpho-physiological adaptations and molecular responses under long-term waterlogging stress in maize through gene expression analysis. Plant Science 304, 110823. DOI: https://doi.org/10.1016/j.plantsci.2021.110823
Khan, A., Ali, S., Shah, S. A., Khan, A., and Ullah, R. (2019). Impact of climate change on maize productivity in Khyber Pakhtunkhwa, Pakistan. Sarhad Journal of Agriculture 35, 594-601. DOI: https://doi.org/10.17582/journal.sja/2019/35.2.594.601
Kiran, A., Umesh, K., and Shankara, M. (2018). Growth and Instability in Agriculture-A case of maize production in India. DOI: https://doi.org/10.15740/HAS/IRJAES/9.2/319-324
Kutschera, U., and Niklas, K. J. (2013). Cell division and turgor-driven stem elongation in juvenile plants: a synthesis. Plant Science 207, 45-56. DOI: https://doi.org/10.1016/j.plantsci.2013.02.004
Langridge, P., and Fleury, D. (2011). Making the most of ‘omics’ for crop breeding. Trends in biotechnology 29, 33-40. DOI: https://doi.org/10.1016/j.tibtech.2010.09.006
Li, Y., Tao, H., Zhang, B., Huang, S., and Wang, P. (2018). Timing of water deficit limits maize kernel setting in association with changes in the source-flow-sink relationship. Frontiers in plant science 9, 1326. DOI: https://doi.org/10.3389/fpls.2018.01326
Liu, M., Sui, Y., Yu, C., Wang, X., Zhang, W., Wang, B., Yan, J., and Duan, L. (2023). Coronatine-Induced Maize Defense against Gibberella Stalk Rot by Activating Antioxidants and Phytohormone Signaling. Journal of Fungi 9, 1155. DOI: https://doi.org/10.3390/jof9121155
Lone, A. A., Dar, Z. A., Gull, A., Gazal, A., Naseer, S., Khan, M. H., Ahangar, A., and Iqbal, A. M. (2021). Breeding maize for food and nutritional security. Cereal grains. London: IntechOpen, 39-54.
Lone, A. A., Khan, M. H., Dar, Z. A., and Wani, S. H. (2018). Breeding strategies for improving growth and yield under waterlogging conditions in maize: a review. Maydica 61, 11.
Lupini, A., Sorgona, A., Princi, M. P., Sunseri, F., and Abenavoli, M. R. (2016). Morphological and physiological effects of trans-cinnamic acid and its hydroxylated derivatives on maize root types. Plant Growth Regulation 78, 263-273. DOI: https://doi.org/10.1007/s10725-015-0091-5
Lynch, J. P. (2013). Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Annals of botany 112, 347-357. DOI: https://doi.org/10.1093/aob/mcs293
Majid, M. U., Awan, M. F., Fatima, K., Tahir, M. S., Ali, Q., Rashid, B., Rao, A. Q., Nasir, I. A., and Husnain, T. (2017). Genetic resources of chili pepper (Capsicum annuum L.) against Phytophthora capsici and their induction through various biotic and abiotic factors. Cytology and Genetics 51, 296-304. DOI: https://doi.org/10.3103/S009545271704003X
Mandal, S., Singh, V. K., Chaudhary, D., Kaur, A., Kumar, R., Panwar, A., Ojre, A., Singh, R. K., and Kaushik, P. (2023). From Grain to Gain: Revolutionizing Maize Nutrition. DOI: https://doi.org/10.20944/preprints202309.2089.v1
Mangani, R., Tesfamariam, E. H., Bellocchi, G., and Hassen, A. (2018). Growth, development, leaf gaseous exchange, and grain yield response of maize cultivars to drought and flooding stress. Sustainability 10, 3492. DOI: https://doi.org/10.3390/su10103492
MANN, K. K. Health benefits of Maize phytochemicals. J. Appl. Soc. Sci 1, 107-114.
Miedema, P. (1982). The effects of low temperature on Zea mays. Advances in agronomy 35, 93-128. DOI: https://doi.org/10.1016/S0065-2113(08)60322-3
Mohapatra, S., Ray, R. C., and Ramachandran, S. (2019). Bioethanol from biorenewable feedstocks: technology, economics, and challenges. In "Bioethanol production from food crops", pp. 3-27. Elsevier. DOI: https://doi.org/10.1016/B978-0-12-813766-6.00001-1
Moharramnejad, S., Sofalian, O., Valizadeh, M., Asgari, A., and Shiri, M. (2015). Proline, glycine betaine, total phenolics and pigment contents in response to osmotic stress in maize seedlings. Journal of bioscience & Biotechnology 4.
Moriondo, M., Giannakopoulos, C., and Bindi, M. (2011). Climate change impact assessment: the role of climate extremes in crop yield simulation. Climatic change 104, 679-701. DOI: https://doi.org/10.1007/s10584-010-9871-0
Mosa, K. A., Ismail, A., and Helmy, M. (2017). Introduction to plant stresses. Plant Stress Tolerance: An Integrated Omics Approach, 1-19. DOI: https://doi.org/10.1007/978-3-319-59379-1_1
Mueller, N. D., Gerber, J. S., Johnston, M., Ray, D. K., Ramankutty, N., and Foley, J. A. (2012). Closing yield gaps through nutrient and water management. Nature 490, 254-257. DOI: https://doi.org/10.1038/nature11420
Muhammad Aslam, M., Waseem, M., Jakada, B. H., Okal, E. J., Lei, Z., Saqib, H. S. A., Yuan, W., Xu, W., and Zhang, Q. (2022). Mechanisms of abscisic acid-mediated drought stress responses in plants. International journal of molecular sciences 23, 1084. DOI: https://doi.org/10.3390/ijms23031084
Naveed, M. T., Qurban, A., Muhammad, A., and Babar, H. (2012). Correlation and path coefficient analysis for various quantitative traits in chickpea (Cicer arietinum L.). International Journal for Agro Veterinary and Medical Sciences (IJAVMS) 6, 97-106. DOI: https://doi.org/10.5455/ijavms.12877
Ong, C., and Baker, C. (1985). Temperature and leaf growth. Control of leaf growth, 175-200.
Panda, S. C. (2010). "Maize crop science," Agrobios (India).
Pasini, L., Bruschini, S., Bertoli, A., Mazza, R., Fracheboud, Y., and Marocco, A. (2005). Photosynthetic performance of cold‐sensitive mutants of maize at low temperature. Physiologia Plantarum 124, 362-370. DOI: https://doi.org/10.1111/j.1399-3054.2005.00522.x
Peñuelas, J., and Staudt, M. (2010). BVOCs and global change. Trends in plant science 15, 133-144. DOI: https://doi.org/10.1016/j.tplants.2009.12.005
Potters, G., Pasternak, T. P., Guisez, Y., Palme, K. J., and Jansen, M. A. (2007). Stress-induced morphogenic responses: growing out of trouble? Trends in plant science 12, 98-105. DOI: https://doi.org/10.1016/j.tplants.2007.01.004
Prasad, T. K. (1996). Mechanisms of chilling‐induced oxidative stress injury and tolerance in developing maize seedlings: changes in antioxidant system, oxidation of proteins and lipids, and protease activities. The Plant Journal 10, 1017-1026. DOI: https://doi.org/10.1046/j.1365-313X.1996.10061017.x
Prasanna, B. (2016). Developing and deploying abiotic stress-tolerant maize varieties in the tropics: challenges and opportunities. Molecular Breeding for Sustainable Crop Improvement: Volume 2, 61-77. DOI: https://doi.org/10.1007/978-3-319-27090-6_3
Rahman, M. H. (2016). Exploring sustainability to feed the world in 2050. Journal of Food Microbiology 1.
Rajasheker, G., Jawahar, G., Jalaja, N., Kumar, S. A., Kumari, P. H., Punita, D. L., Karumanchi, A. R., Reddy, P. S., Rathnagiri, P., and Sreenivasulu, N. (2019). Role and regulation of osmolytes and ABA interaction in salt and drought stress tolerance. In "Plant signaling molecules", pp. 417-436. Elsevier. DOI: https://doi.org/10.1016/B978-0-12-816451-8.00026-5
Ramazan, S., Nazir, I., Yousuf, W., and John, R. (2022). Environmental stress tolerance in maize (Zea mays): role of polyamine metabolism. Functional Plant Biology 50, 85-96. DOI: https://doi.org/10.1071/FP21324
Ren, B., Zhang, J., Li, X., Fan, X., Dong, S., Liu, P., and Zhao, B. (2014). Effects of waterlogging on the yield and growth of summer maize under field conditions. Canadian Journal of plant science 94, 23-31. DOI: https://doi.org/10.4141/cjps2013-175
Rouf Shah, T., Prasad, K., and Kumar, P. (2016). Maize—A potential source of human nutrition and health: A review. Cogent Food & Agriculture 2, 1166995. DOI: https://doi.org/10.1080/23311932.2016.1166995
Rubio, G., Sorgona, A., and Lynch, J. P. (2004). Spatial mapping of phosphorus influx in bean root systems using digital autoradiography. Journal of experimental botany 55, 2269-2280. DOI: https://doi.org/10.1093/jxb/erh246
Saeed, M. S., and Saeed, A. (2020). Health benefits of maize crop-an overview. Curr Res Agric Farming 1, 5-8. DOI: https://doi.org/10.18782/2582-7146.114
Salika, R., and Riffat, J. (2021). Abiotic stress responses in maize: a review. Acta Physiologiae Plantarum 43, 130. DOI: https://doi.org/10.1007/s11738-021-03296-0
Sánchez, B., Rasmussen, A., and Porter, J. R. (2014). Temperatures and the growth and development of maize and rice: a review. Global change biology 20, 408-417. DOI: https://doi.org/10.1111/gcb.12389
Sarwar, M., Anjum, S., Alam, M. W., Ali, Q., Ayyub, C., Haider, M. S., Ashraf, M. I., and Mahboob, W. (2022). Triacontanol regulates morphological traits and enzymatic activities of salinity affected hot pepper plants. Scientific Reports 12, 1-8. DOI: https://doi.org/10.1038/s41598-022-06516-w
Sarwar, M., Anjum, S., Ali, Q., Alam, M. W., Haider, M. S., and Mehboob, W. (2021). Triacontanol modulates salt stress tolerance in cucumber by altering the physiological and biochemical status of plant cells. Scientific reports 11, 1-10. DOI: https://doi.org/10.1038/s41598-021-04174-y
Searchinger, T., Hanson, C., Ranganathan, J., Lipinski, B., Waite, R., Winterbottom, R., Dinshaw, A., Heimlich, R., Boval, M., and Chemineau, P. (2014). "Creating a sustainable food future. A menu of solutions to sustainably feed more than 9 billion people by 2050. World resources report 2013-14: interim findings," World Resources Institute (WRI); World Bank Groupe-Banque Mondiale; United ….
Serna-Saldivar, S. O., Gutiérrez-Uribe, J. A., and García-Lara, S. (2015). Phytochemical profiles and nutraceutical properties of corn and wheat tortillas. In "Tortillas", pp. 65-96. Elsevier. DOI: https://doi.org/10.1016/B978-1-891127-88-5.50003-7
Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., and Savouré, A. (2015). Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of botany 115, 433-447. DOI: https://doi.org/10.1093/aob/mcu239
Sravani, D., Guddeti, M., and Rajanikanth, E. (2021). Boquet Ears in Maize. Biotica Researh Today 3, 70-71.
Srivastava, J. P., Singh, P., Singh, V. P., and Bansal, R. (2010). Effect of waterlogging on carbon exchange rate, stomatal conductance and mineral nutrient status in maize and pigeonpea. Plant Stress 4, 94-99.
Sunoj, V. J., Shroyer, K. J., Jagadish, S. K., and Prasad, P. V. (2016). Diurnal temperature amplitude alters physiological and growth response of maize (Zea mays L.) during the vegetative stage. Environmental and Experimental Botany 130, 113-121. DOI: https://doi.org/10.1016/j.envexpbot.2016.04.007
Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., and Mittler, R. (2014). Abiotic and biotic stress combinations. New Phytologist 203, 32-43. DOI: https://doi.org/10.1111/nph.12797
Tahjib-Ul-Arif, M., Siddiqui, M. N., Sohag, A. A. M., Sakil, M. A., Rahman, M. M., Polash, M. A. S., Mostofa, M. G., and Tran, L.-S. P. (2018). Salicylic acid-mediated enhancement of photosynthesis attributes and antioxidant capacity contributes to yield improvement of maize plants under salt stress. Journal of plant growth regulation 37, 1318-1330. DOI: https://doi.org/10.1007/s00344-018-9867-y
Tankem, T., Ngwasiri, P. N., Ambindei, W. A., Wingang, M. C., Ngwabie, N. M., Ngassoum, M. B., and Aba, E. R. (2023). Production and Evaluation of the Nutritional and Functional Qualities of “Adakwa” Enriched with Waste Biomass of Traditional Brewer’s Spent Grain as a Functional Staple Food. Advances in Chemical Engineering and Science 13, 265-288. DOI: https://doi.org/10.4236/aces.2023.134019
Thakur, P., Kumar, S., Malik, J. A., Berger, J. D., and Nayyar, H. (2010). Cold stress effects on reproductive development in grain crops: an overview. Environmental and Experimental Botany 67, 429-443. DOI: https://doi.org/10.1016/j.envexpbot.2009.09.004
Tiwari, Y. K., and Yadav, S. K. (2019). High temperature stress tolerance in maize (Zea mays L.): Physiological and molecular mechanisms. Journal of Plant Biology 62, 93-102. DOI: https://doi.org/10.1007/s12374-018-0350-x
Ujong, A. E., Aniefiok, I. E., and Onyekwe, J. C. (2023). Nutrient Composition and Sensory Properties of Breakfast Cereal Made from Yellow Maize and Enriched with Soybean and Groundnut Flours. Turkish Journal of Agriculture-Food Science and Technology 11, 651-656. DOI: https://doi.org/10.24925/turjaf.v11i4.651-656.5369
Vaughan, M. M., Block, A., Christensen, S. A., Allen, L. H., and Schmelz, E. A. (2018). The effects of climate change associated abiotic stresses on maize phytochemical defenses. Phytochemistry Reviews 17, 37-49. DOI: https://doi.org/10.1007/s11101-017-9508-2
Vaughan, M. M., Christensen, S., Schmelz, E. A., Huffaker, A., Mcauslane, H. J., Alborn, H. T., Romero, M., Allen, L. H., and Teal, P. E. (2015). Accumulation of terpenoid phytoalexins in maize roots is associated with drought tolerance. Plant, cell & environment 38, 2195-2207. DOI: https://doi.org/10.1111/pce.12482
Vaughan, M. M., Huffaker, A., Schmelz, E. A., Dafoe, N. J., Christensen, S. A., McAuslane, H. J., Alborn, H. T., Allen, L. H., and Teal, P. E. (2016). Interactive effects of elevated [CO2] and drought on the maize phytochemical defense response against mycotoxigenic Fusarium verticillioides. PloS one 11, e0159270. DOI: https://doi.org/10.1371/journal.pone.0159270
Venkateswarlu, B., and Shanker, A. K. (2011). Dryland agriculture: bringing resilience to crop production under changing climate. In "Crop stress and its management: Perspectives and strategies", pp. 19-44. Springer. DOI: https://doi.org/10.1007/978-94-007-2220-0_2
Vescio, R., Abenavoli, M. R., and Sorgonà, A. (2020). Single and combined abiotic stress in maize root morphology. Plants 10, 5. DOI: https://doi.org/10.3390/plants10010005
Vinocur, B., and Altman, A. (2005). Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current opinion in biotechnology 16, 123-132. DOI: https://doi.org/10.1016/j.copbio.2005.02.001
Wang, Y., Sheng, D., Zhang, P., Dong, X., Yan, Y., Hou, X., Wang, P., and Huang, S. (2021). High temperature sensitivity of kernel formation in different short periods around silking in maize. Environmental and Experimental Botany 183, 104343. DOI: https://doi.org/10.1016/j.envexpbot.2020.104343
Wani, A. B., Chadar, H., Wani, A. H., Singh, S., and Upadhyay, N. (2017). Salicylic acid to decrease plant stress. Environmental Chemistry Letters 15, 101-123. DOI: https://doi.org/10.1007/s10311-016-0584-0
Wheeler, T., and Von Braun, J. (2013). Climate change impacts on global food security. Science 341, 508-513. DOI: https://doi.org/10.1126/science.1239402
Wijewardana, C., Henry, W. B., Hock, M. W., and Reddy, K. R. (2016). Growth and physiological trait variation among corn hybrids for cold tolerance. Canadian Journal of plant science 96, 639-656. DOI: https://doi.org/10.1139/cjps-2015-0286
Xiao, J., and Bai, W. (2019). Bioactive phytochemicals. Critical Reviews in Food Science and Nutrition 59, 827-829. DOI: https://doi.org/10.1080/10408398.2019.1601848
Xu, H., Twine, T. E., and Girvetz, E. (2016). Climate change and maize yield in Iowa. PloS one 11, e0156083. DOI: https://doi.org/10.1371/journal.pone.0156083
Zabed, H., Sahu, J., Suely, A., Boyce, A., and Faruq, G. (2017). Bioethanol production from renewable sources: Current perspectives and technological progress. Renewable and Sustainable Energy Reviews 71, 475-501. DOI: https://doi.org/10.1016/j.rser.2016.12.076
Zhan, A., Schneider, H., and Lynch, J. P. (2015). Reduced lateral root branching density improves drought tolerance in maize. Plant physiology 168, 1603-1615. DOI: https://doi.org/10.1104/pp.15.00187
Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., Huang, M., Yao, Y., Bassu, S., and Ciais, P. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of sciences 114, 9326-9331. DOI: https://doi.org/10.1073/pnas.1701762114
Zubair, M., Shakir, M., Ali, Q., Rani, N., Fatima, N., Farooq, S., Shafiq, S., Kanwal, N., Ali, F., and Nasir, I. A. (2016). Rhizobacteria and phytoremediation of heavy metals. Environmental Technology Reviews 5, 112-119. DOI: https://doi.org/10.1080/21622515.2016.1259358
Zulfiqar, F., Akram, N. A., and Ashraf, M. (2020). Osmoprotection in plants under abiotic stresses: New insights into a classical phenomenon. Planta 251, 1-17. DOI: https://doi.org/10.1007/s00425-019-03293-1
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2023 M ASHRAF (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
