THE ROLE OF ABSCISIC ACID IN INDUCING COLD TOLERANCE IN PLANTS

Authors

  • A TAHIR Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan Author
  • M ASHRAF Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan Author

DOI:

https://doi.org/10.64013/bbasrjlifess.v2022i1.2

Keywords:

cold tolerance, ABA, low temperature, physiological, phytohormone

Abstract

Abscisic acid's (ABA) mode of action and its connections to adaptations to cold have captured plant hormone researchers' attention for over a decade. Abiotic stress is the main risk to agriculture productivity needed to feed the globe in the next decades. A significant phytohormone, ABA, is crucial in responding to various challenges, including high and low temperatures, drought, thermal or heat stress, and heavy metal and radiation stress. Stress situations cause plants to slow down their growth and development, ultimately impacting the output. There is a lot of proof that ABA moves around inside plants. In reaction to dry soil conditions, As a growth hormone ABA is an important biochemical that causes stomata closures. It has been claimed that ABA produced in morphological plant body parts is transferred to seeds. The transport of ABA is a crucial mechanism in physiological responses because it significantly determines an endogenous concentration of ABA action sites. ABA is a significant messenger that is a signaling mediator to control how plants respond adaptively to various environmental stressors. It is described in detail that several plant exposures elevated ABA endogenous levels under cold stress. In our present discussion, the role of ABA in low temperatures will be our main focus. ABA transportation in plants, the biosynthetic pathway of ABA in plants, the Pathway from IPP to ABA Production, the ABA functions in plants, and the location of biosynthesis. The review also deals with the production of ABA in plants under cold stress.

Downloads

Download data is not yet available.

References

Agrawal, G. K., Yamazaki, M., Kobayashi, M., Hirochika, R., Miyao, A., and Hirochika, H. (2001). Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel OsTATC gene. Plant physiology 125, 1248-1257. DOI: https://doi.org/10.1104/pp.125.3.1248

Ali, F., Qanmber, G., Li, F., and Wang, Z. (2022). Updated role of ABA in seed maturation, dormancy, and germination. Journal of Advanced Research 35, 199-214. DOI: https://doi.org/10.1016/j.jare.2021.03.011

Antoni, R., Gonzalez-Guzman, M., Rodriguez, L., Peirats-Llobet, M., Pizzio, G. A., Fernandez, M. A., De Winne, N., De Jaeger, G., Dietrich, D., and Bennett, M. J. (2013). PYRABACTIN RESISTANCE1-LIKE8 plays an important role for the regulation of abscisic acid signaling in root. Plant physiology 161, 931-941. DOI: https://doi.org/10.1104/pp.112.208678

Awan, S. Z., Chandler, J. O., Harrison, P. J., Sergeant, M. J., Bugg, T. D., and Thompson, A. J. (2017). Promotion of germination using hydroxamic acid inhibitors of 9-cis-epoxycarotenoid dioxygenase. Frontiers in plant science 8, 357. DOI: https://doi.org/10.3389/fpls.2017.00357

Benderradji, L., Saibi, W., and Brini, F. (2021). Role of ABA in overcoming environmental stress: sensing, signaling and crosstalk. Annu. Agric. Crop Sci 6, 1070.

Bhatla, S. C., A. Lal, M., and Kalra, G. (2018). Abscisic Acid. Plant Physiology, Development and Metabolism, 629-641. DOI: https://doi.org/10.1007/978-981-13-2023-1_18

Borowitzka, M. A. (1976). Some unusual features of the ultrastructure of the chloroplasts of the green algal order Caulerpales and their development. Protoplasma 89, 129-147. DOI: https://doi.org/10.1007/BF01279334

Brady, S. M., Sarkar, S. F., Bonetta, D., and McCourt, P. (2003). The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. The Plant Journal 34, 67-75. DOI: https://doi.org/10.1046/j.1365-313X.2003.01707.x

Brandt, B., Brodsky, D. E., Xue, S., Negi, J., Iba, K., Kangasjärvi, J., Ghassemian, M., Stephan, A. B., Hu, H., and Schroeder, J. I. (2012). Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action. Proceedings of the National Academy of Sciences 109, 10593-10598. DOI: https://doi.org/10.1073/pnas.1116590109

Bürger, M., and Chory, J. (2019). Stressed out about hormones: how plants orchestrate immunity. Cell host & microbe 26, 163-172. DOI: https://doi.org/10.1016/j.chom.2019.07.006

Capelle, V., Remoué, C., Moreau, L., Reyss, A., Mahé, A., Massonneau, A., Falque, M., Charcosset, A., Thévenot, C., and Rogowsky, P. (2010). QTLs and candidate genes for desiccation and abscisic acid content in maize kernels. BMC Plant Biology 10, 1-22. DOI: https://doi.org/10.1186/1471-2229-10-2

Chen, K., Li, G. J., Bressan, R. A., Song, C. P., Zhu, J. K., and Zhao, Y. (2020). Abscisic acid dynamics, signaling, and functions in plants. Journal of integrative plant biology 62, 25-54. DOI: https://doi.org/10.1111/jipb.12899

Chen, L. J., Xiang, H. Z., Miao, Y., Zhang, L., Guo, Z. F., Zhao, X. H., Lin, J. W., and Li, T. L. (2014). An overview of cold resistance in plants. Journal of Agronomy and Crop Science 200, 237-245. DOI: https://doi.org/10.1111/jac.12082

Cheng, W.-H., Endo, A., Zhou, L., Penney, J., Chen, H.-C., Arroyo, A., Leon, P., Nambara, E., Asami, T., and Seo, M. (2002). A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. The plant cell 14, 2723-2743. DOI: https://doi.org/10.1105/tpc.006494

Chinnusamy, V., Schumaker, K., and Zhu, J. K. (2004). Molecular genetic perspectives on cross‐talk and specificity in abiotic stress signalling in plants. Journal of experimental botany 55, 225-236. DOI: https://doi.org/10.1093/jxb/erh005

Chloroplast, C. Different forms of plastids. Plant Cells and their Organelles, 240.

Choi, H.-i., Hong, J.-h., Ha, J.-o., Kang, J.-y., and Kim, S. Y. (2000). ABFs, a family of ABA-responsive element binding factors. Journal of Biological Chemistry 275, 1723-1730. DOI: https://doi.org/10.1074/jbc.275.3.1723

Cowan, A. K., and Richardson, G. R. (1993). The biosynthesis of abscisic acid from all-trans-β-carotene in a cell-free system from Citrus sinensis exocarp. Plant and cell physiology 34, 969-972.

Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R., and Abrams, S. R. (2010). Abscisic acid: emergence of a core signaling network. Annual review of plant biology 61, 651-679. DOI: https://doi.org/10.1146/annurev-arplant-042809-112122

Daeter, W., and Hartung, W. (1993). The permeability of the epidermal cell plasma membrane of barley leaves to abscisic acid. Planta 191, 41-47. DOI: https://doi.org/10.1007/BF00240894

Daszkowska-Golec, A., Wojnar, W., Rosikiewicz, M., Szarejko, I., Maluszynski, M., Szweykowska-Kulinska, Z., and Jarmolowski, A. (2013). Arabidopsis suppressor mutant of abh1 shows a new face of the already known players: ABH1 (CBP80) and ABI4—in response to ABA and abiotic stresses during seed germination. Plant molecular biology 81, 189-209. DOI: https://doi.org/10.1007/s11103-012-9991-1

Davis, L. A., and Addicott, F. T. (1972). Abscisic acid: correlations with abscission and with development in the cotton fruit. Plant physiology 49, 644-648. DOI: https://doi.org/10.1104/pp.49.4.644

DeJong-Hughes, J., Moncrief, J. F., Voorhees, W., and Swan, J. (2001). "Soil compaction: causes, effects and control," St. Paul, MN: University of Minnesota Extension Service.

Dejonghe, W., Okamoto, M., and Cutler, S. R. (2018). Small molecule probes of ABA biosynthesis and signaling. Plant and cell physiology 59, 1490-1499. DOI: https://doi.org/10.1093/pcp/pcy126

Deng, X., Qiao, D., Li, L., Yu, X., Zhang, N., Lei, G., and Cao, Y. (2005). The effect of chilling stress on physiological characters of medicago sativa. J Sichuan Univ (Natural Science Edition) 42, 190-194.

Ding, Y., Avramova, Z., and Fromm, M. (2011). The Arabidopsis trithorax‐like factor ATX1 functions in dehydration stress responses via ABA‐dependent and ABA‐independent pathways. The Plant Journal 66, 735-744. DOI: https://doi.org/10.1111/j.1365-313X.2011.04534.x

Dobrev, P. I., and Vankova, R. (2012). Quantification of abscisic acid, cytokinin, and auxin content in salt-stressed plant tissues. Plant salt tolerance: methods and protocols, 251-261. DOI: https://doi.org/10.1007/978-1-61779-986-0_17

Dong, T., Park, Y., and Hwang, I. (2015). Abscisic acid: biosynthesis, inactivation, homoeostasis and signalling. Essays in biochemistry 58, 29-48. DOI: https://doi.org/10.1042/bse0580029

Donno, D., Beccaro, G. L., Cerutti, A., Mellano, M. G., and Bounous, G. (2015). Bud Extracts as New Phytochemical Source for Herbal Preparations—Quality Control and Standardization by Analytical Fingerprint. Phytochemicals—Isolation, Characterisation and Role in Human Health, 1st ed.; Rao, AV, Rao, LG, Eds, 187-218. DOI: https://doi.org/10.5772/59759

Duan, L., Dietrich, D., Ng, C. H., Chan, P. M. Y., Bhalerao, R., Bennett, M. J., and Dinneny, J. R. (2013). Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. The plant cell 25, 324-341. DOI: https://doi.org/10.1105/tpc.112.107227

Duckham, S., Linforth, R., and Taylor, I. (1991). Abscisic‐acid‐deficient mutants at the aba gene locus of Arabidopsis thaliana are impaired in the epoxidation of zeaxanthin. Plant, cell & environment 14, 601-606. DOI: https://doi.org/10.1111/j.1365-3040.1991.tb01531.x

Ellis, M. H., Dennis, E. S., and James Peacock, W. (1999). Arabidopsis roots and shoots have different mechanisms for hypoxic stress tolerance. Plant physiology 119, 57-64. DOI: https://doi.org/10.1104/pp.119.1.57

Ensminger, I., Busch, F., and Huner, N. P. (2006). Photostasis and cold acclimation: sensing low temperature through photosynthesis. Physiologia Plantarum 126, 28-44. DOI: https://doi.org/10.1111/j.1399-3054.2006.00627.x

Fan, J., Ren, J., Zhu, W., Amombo, E., Fu, J., and Chen, L. (2014). Antioxidant responses and gene expression in bermudagrass under cold stress. Journal of the American Society for Horticultural Science 139, 699-705. DOI: https://doi.org/10.21273/JASHS.139.6.699

Feng, C. Z., Chen, Y., Wang, C., Kong, Y. H., Wu, W. H., and Chen, Y. F. (2014). Arabidopsis RAV 1 transcription factor, phosphorylated by S n RK 2 kinases, regulates the expression of ABI 3, ABI 4, and ABI 5 during seed germination and early seedling development. The Plant Journal 80, 654-668. DOI: https://doi.org/10.1111/tpj.12670

Feng, J., Liu, R., Chen, P., Yuan, S., Zhao, D., Zhang, J., and Zheng, Z. (2015). Degradation of aqueous 3, 4-dichloroaniline by a novel dielectric barrier discharge plasma reactor. Environmental Science and Pollution Research 22, 4447-4459. DOI: https://doi.org/10.1007/s11356-014-3690-1

Finkelstein, R. (2013). Abscisic acid synthesis and response. The Arabidopsis book/American society of plant biologists 11. DOI: https://doi.org/10.1199/tab.0166

Finkelsteina, R. R., and Rockb, C. D. (2002). Abscisic acid biosynthesis and response. The Arabidopsis Book; American Society of Plant Biologists. DOI: https://doi.org/10.1199/tab.0058

Fu, J., Wu, Y., Miao, Y., Xu, Y., Zhao, E., Wang, J., Sun, H., Liu, Q., Xue, Y., and Xu, Y. (2017). Improved cold tolerance in Elymus nutans by exogenous application of melatonin may involve ABA-dependent and ABA-independent pathways. Scientific reports 7, 39865. DOI: https://doi.org/10.1038/srep39865

Fujii, H., Chinnusamy, V., Rodrigues, A., Rubio, S., Antoni, R., Park, S.-Y., Cutler, S. R., Sheen, J., Rodriguez, P. L., and Zhu, J.-K. (2009). In vitro reconstitution of an abscisic acid signalling pathway. Nature 462, 660-664. DOI: https://doi.org/10.1038/nature08599

Fujita, Y., Fujita, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2011). ABA-mediated transcriptional regulation in response to osmotic stress in plants. Journal of plant research 124, 509-525. DOI: https://doi.org/10.1007/s10265-011-0412-3

Gao, S.-Q., Chen, M., Xu, Z.-S., Zhao, C.-P., Li, L., Xu, H.-j., Tang, Y.-m., Zhao, X., and Ma, Y.-Z. (2011). The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants. Plant molecular biology 75, 537-553. DOI: https://doi.org/10.1007/s11103-011-9738-4

González-Guzmán, M., Apostolova, N., Bellés, J. M., Barrero, J. M., Piqueras, P., Ponce, M. R., Micol, J. L., Serrano, R., and Rodríguez, P. L. (2002). The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. The plant cell 14, 1833-1846. DOI: https://doi.org/10.1105/tpc.002477

Gu, X.-Y., Liu, T., Feng, J., Suttle, J. C., and Gibbons, J. (2010). The qSD12 underlying gene promotes abscisic acid accumulation in early developing seeds to induce primary dormancy in rice. Plant molecular biology 73, 97-104. DOI: https://doi.org/10.1007/s11103-009-9555-1

Gull, A., Lone, A. A., and Wani, N. U. I. (2019). Biotic and abiotic stresses in plants. Abiotic and biotic stress in plants, 1-19. DOI: https://doi.org/10.5772/intechopen.85832

Gusta, L., Trischuk, R., and Weiser, C. (2005). Plant cold acclimation: the role of abscisic acid. Journal of Plant Growth Regulation 24, 308-318. DOI: https://doi.org/10.1007/s00344-005-0079-x

Hartung, W., Sauter, A., and Hose, E. (2002). Abscisic acid in the xylem: where does it come from, where does it go to? Journal of experimental botany 53, 27-32. DOI: https://doi.org/10.1093/jexbot/53.366.27

He, H., Xue, L., Tian, L., and Chen, Y. (2008). Effect of low temperature stress on the chlorophyll contents and chlorophyll fluorescence parameters in muskmelon seedling leaves. Northern Hort 4, 121-127.

Heidarvand, L., and Maali Amiri, R. (2010). What happens in plant molecular responses to cold stress? Acta Physiologiae Plantarum 32, 419-431. DOI: https://doi.org/10.1007/s11738-009-0451-8

Hirai, N. (2018). Abscisic acid. In "Chemistry of plant hormones", pp. 201-248. Routledge. DOI: https://doi.org/10.1201/9781315139241-5

Hoad, G. (1995). Transport of hormones in the phloem of higher plants. Plant Growth Regulation 16, 173-182. DOI: https://doi.org/10.1007/BF00029538

Howitt, C. A., and Pogson, B. J. (2006). Carotenoid accumulation and function in seeds and non‐green tissues. Plant, cell & environment 29, 435-445. DOI: https://doi.org/10.1111/j.1365-3040.2005.01492.x

Hsu, F.-C., Chou, M.-Y., Peng, H.-P., Chou, S.-J., and Shih, M.-C. (2011). Insights into hypoxic systemic responses based on analyses of transcriptional regulation in Arabidopsis. PLoS One 6, e28888. DOI: https://doi.org/10.1371/journal.pone.0028888

Huang, B., Fan, Y., Cui, L., Li, C., and Guo, C. (2022). Cold stress response mechanisms in anther development. International Journal of Molecular Sciences 24, 30. DOI: https://doi.org/10.3390/ijms24010030

Huang, X., Chen, M.-H., Yang, L.-T., Li, Y.-R., and Wu, J.-M. (2015). Effects of exogenous abscisic acid on cell membrane and endogenous hormone contents in leaves of sugarcane seedlings under cold stress. Sugar Tech 17, 59-64. DOI: https://doi.org/10.1007/s12355-014-0343-0

Huang, Y., Feng, C.-Z., Ye, Q., Wu, W.-H., and Chen, Y.-F. (2016). Arabidopsis WRKY6 transcription factor acts as a positive regulator of abscisic acid signaling during seed germination and early seedling development. PLoS Genetics 12, e1005833. DOI: https://doi.org/10.1371/journal.pgen.1005833

Hubbard, K. E., Nishimura, N., Hitomi, K., Getzoff, E. D., and Schroeder, J. I. (2010). Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes & development 24, 1695-1708. DOI: https://doi.org/10.1101/gad.1953910

Ikegami, K., Okamoto, M., Seo, M., and Koshiba, T. (2009). Activation of abscisic acid biosynthesis in the leaves of Arabidopsis thaliana in response to water deficit. Journal of plant research 122, 235-243. DOI: https://doi.org/10.1007/s10265-008-0201-9

Iuchi, S., Kobayashi, M., Taji, T., Naramoto, M., Seki, M., Kato, T., Tabata, S., Kakubari, Y., Yamaguchi‐Shinozaki, K., and Shinozaki, K. (2001). Regulation of drought tolerance by gene manipulation of 9‐cis‐epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. The Plant Journal 27, 325-333. DOI: https://doi.org/10.1046/j.1365-313x.2001.01096.x

Jarvis, P., and López-Juez, E. (2013). Biogenesis and homeostasis of chloroplasts and other plastids. Nature Reviews Molecular Cell Biology 14, 787-802. DOI: https://doi.org/10.1038/nrm3702

Jia, K.-P., Mi, J., Ali, S., Ohyanagi, H., Moreno, J. C., Ablazov, A., Balakrishna, A., Berqdar, L., Fiore, A., and Diretto, G. (2022). An alternative, zeaxanthin epoxidase-independent abscisic acid biosynthetic pathway in plants. Molecular Plant 15, 151-166. DOI: https://doi.org/10.1016/j.molp.2021.09.008

Jiang, F., and Hartung, W. (2008). Long-distance signalling of abscisic acid (ABA): the factors regulating the intensity of the ABA signal. Journal of experimental botany 59, 37-43. DOI: https://doi.org/10.1093/jxb/erm127

Kim, Y.-H., Choi, K.-I., Khan, A. L., Waqas, M., and Lee, I.-J. (2016). Exogenous application of abscisic acid regulates endogenous gibberellins homeostasis and enhances resistance of oriental melon (Cucumis melo var. L.) against low temperature. Scientia Horticulturae 207, 41-47. DOI: https://doi.org/10.1016/j.scienta.2016.05.009

Kishor, P. B. K., Tiozon, R. N., Fernie, A. R., and Sreenivasulu, N. (2022). Abscisic acid and its role in the modulation of plant growth, development, and yield stability. Trends in Plant Science. DOI: https://doi.org/10.1016/j.tplants.2022.08.013

Krouk, G., Ruffel, S., Gutiérrez, R. A., Gojon, A., Crawford, N. M., Coruzzi, G. M., and Lacombe, B. (2011). A framework integrating plant growth with hormones and nutrients. Trends in Plant Science 16, 178-182. DOI: https://doi.org/10.1016/j.tplants.2011.02.004

Ku, Y.-S., Sintaha, M., Cheung, M.-Y., and Lam, H.-M. (2018). Plant hormone signaling crosstalks between biotic and abiotic stress responses. International Journal of Molecular Sciences 19, 3206. DOI: https://doi.org/10.3390/ijms19103206

Kumar, A., and Verma, J. P. (2018). Does plant—microbe interaction confer stress tolerance in plants: a review? Microbiological research 207, 41-52. DOI: https://doi.org/10.1016/j.micres.2017.11.004

Kumar, S., Kaur, G., and Nayyar, H. (2008). Exogenous application of abscisic acid improves cold tolerance in chickpea (Cicer arietinum L.). Journal of Agronomy and Crop Science 194, 449-456. DOI: https://doi.org/10.1111/j.1439-037X.2008.00335.x

Kuromori, T., Seo, M., and Shinozaki, K. (2018). ABA transport and plant water stress responses. Trends in Plant Science 23, 513-522. DOI: https://doi.org/10.1016/j.tplants.2018.04.001

Le Page-Degivry, M.-T., Barthe, P., and Garello, G. (1990). Involvement of endogenous abscisic acid in onset and release of Helianthus annuus embryo dormancy. Plant physiology 92, 1164-1168. DOI: https://doi.org/10.1104/pp.92.4.1164

Lee, S. C., and Luan, S. (2012). ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant, cell & environment 35, 53-60. DOI: https://doi.org/10.1111/j.1365-3040.2011.02426.x

Li, L., and Yuan, H. (2013). Chromoplast biogenesis and carotenoid accumulation. Archives of biochemistry and biophysics 539, 102-109. DOI: https://doi.org/10.1016/j.abb.2013.07.002

Li, X., Tan, D. X., Jiang, D., and Liu, F. (2016). Melatonin enhances cold tolerance in drought‐primed wild‐type and abscisic acid‐deficient mutant barley. Journal of Pineal Research 61, 328-339. DOI: https://doi.org/10.1111/jpi.12350

Lievens, L., Pollier, J., Goossens, A., Beyaert, R., and Staal, J. (2017). Abscisic acid as pathogen effector and immune regulator. Frontiers in plant science 8, 587. DOI: https://doi.org/10.3389/fpls.2017.00587

Liu, H., Song, S., Zhang, H., Li, Y., Niu, L., Zhang, J., and Wang, W. (2022). Signaling transduction of ABA, ROS, and Ca2+ in plant stomatal closure in response to drought. International Journal of Molecular Sciences 23, 14824. DOI: https://doi.org/10.3390/ijms232314824

Ma, Y., Cao, J., He, J., Chen, Q., Li, X., and Yang, Y. (2018). Molecular mechanism for the regulation of ABA homeostasis during plant development and stress responses. International Journal of Molecular Sciences 19, 3643. DOI: https://doi.org/10.3390/ijms19113643

Mahajan, S., and Tuteja, N. (2005). Cold, salinity and drought stresses: an overview. Archives of biochemistry and biophysics 444, 139-158. DOI: https://doi.org/10.1016/j.abb.2005.10.018

Malyshev, A. V., Henry, H. A., and Kreyling, J. (2014). Relative effects of temperature vs. photoperiod on growth and cold acclimation of northern and southern ecotypes of the grass Arrhenatherum elatius. Environmental and Experimental Botany 106, 189-196. DOI: https://doi.org/10.1016/j.envexpbot.2014.02.007

Mantyla, E., Lang, V., and Palva, E. T. (1995). Role of abscisic acid in drought-induced freezing tolerance, cold acclimation, and accumulation of LT178 and RAB18 proteins in Arabidopsis thaliana. Plant physiology 107, 141-148. DOI: https://doi.org/10.1104/pp.107.1.141

Manzi, M., Lado, J., Rodrigo, M. J., Zacarías, L., Arbona, V., and Gómez-Cadenas, A. (2015). Root ABA accumulation in long-term water-stressed plants is sustained by hormone transport from aerial organs. Plant and cell physiology 56, 2457-2466. DOI: https://doi.org/10.1093/pcp/pcv161

Marin, E., Nussaume, L., Quesada, A., Gonneau, M., Sotta, B., Hugueney, P., Frey, A., and Marion‐Poll, A. (1996). Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. The EMBO journal 15, 2331-2342. DOI: https://doi.org/10.1002/j.1460-2075.1996.tb00589.x

Masclaux-Daubresse, C., Purdy, S., Lemaitre, T., Pourtau, N., Taconnat, L., Renou, J.-P., and Wingler, A. (2007). Genetic variation suggests interaction between cold acclimation and metabolic regulation of leaf senescence. Plant physiology 143, 434-446. DOI: https://doi.org/10.1104/pp.106.091355

Mauch-Mani, B., and Mauch, F. (2005). The role of abscisic acid in plant–pathogen interactions. Current opinion in plant biology 8, 409-414. DOI: https://doi.org/10.1016/j.pbi.2005.05.015

Méndez-Hernández, H. A., Ledezma-Rodríguez, M., Avilez-Montalvo, R. N., Juárez-Gómez, Y. L., Skeete, A., Avilez-Montalvo, J., De-la-Peña, C., and Loyola-Vargas, V. M. (2019). Signaling overview of plant somatic embryogenesis. Frontiers in plant science 10, 77. DOI: https://doi.org/10.3389/fpls.2019.00077

Milborrow, B. (2001). The pathway of biosynthesis of abscisic acid in vascular plants: a review of the present state of knowledge of ABA biosynthesis. Journal of experimental botany 52, 1145-1164. DOI: https://doi.org/10.1093/jexbot/52.359.1145

Milborrow, B., and Lee, H. (1997). Endogenous biosynthetic precursors of (+)-abscisic acid. IV. Biosynthesis of ABA from [2Hn] carotenoids by a cell-free system from avocado. Functional Plant Biology 24, 715-726. DOI: https://doi.org/10.1071/PP96100

Mishra, G., Zhang, W., Deng, F., Zhao, J., and Wang, X. (2006). A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. Science 312, 264-266. DOI: https://doi.org/10.1126/science.1123769

Moriwaki, T., Miyazawa, Y., Kobayashi, A., and Takahashi, H. (2013). Molecular mechanisms of hydrotropism in seedling roots of Arabidopsis thaliana (Brassicaceae). American journal of botany 100, 25-34. DOI: https://doi.org/10.3732/ajb.1200419

Munns, R., and Sharp, R. (1993). Involvement of abscisic acid in controlling plant growth in soil of low water potential. Functional Plant Biology 20, 425-437. DOI: https://doi.org/10.1071/PP9930425

Nakabayashi, K., Okamoto, M., Koshiba, T., Kamiya, Y., and Nambara, E. (2005). Genome‐wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. The Plant Journal 41, 697-709. DOI: https://doi.org/10.1111/j.1365-313X.2005.02337.x

Nambara, E., and Marion-Poll, A. (2005). Abscisic acid biosynthesis and catabolism. Annu. Rev. Plant Biol. 56, 165-185. DOI: https://doi.org/10.1146/annurev.arplant.56.032604.144046

Ng, L. M., Melcher, K., Teh, B. T., and Xu, H. E. (2014). Abscisic acid perception and signaling: structural mechanisms and applications. Acta Pharmacologica Sinica 35, 567-584. DOI: https://doi.org/10.1038/aps.2014.5

North, H. M., Almeida, A. D., Boutin, J. P., Frey, A., To, A., Botran, L., Sotta, B., and Marion‐Poll, A. (2007). The Arabidopsis ABA‐deficient mutant aba4 demonstrates that the major route for stress‐induced ABA accumulation is via neoxanthin isomers. The Plant Journal 50, 810-824. DOI: https://doi.org/10.1111/j.1365-313X.2007.03094.x

O'Brien, C., Hiti-Bandaralage, J., Folgado, R., Hayward, A., Lahmeyer, S., Folsom, J., and Mitter, N. (2020). Cryopreservation for tree species with recalcitrant seeds: The avocado case. DOI: https://doi.org/10.20944/preprints202012.0304.v1

Parry, A. D., and Horgan, R. (1991). Carotenoids and abscisic acid (ABA) biosynthesis in higher plants. Physiologia Plantarum 82, 320-326. DOI: https://doi.org/10.1111/j.1399-3054.1991.tb00100.x

Pei, Z.-M., Ghassemian, M., Kwak, C. M., McCourt, P., and Schroeder, J. I. (1998). Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss. Science 282, 287-290. DOI: https://doi.org/10.1126/science.282.5387.287

Peng, X., Wu, H., Chen, H., Zhang, Y., Qiu, D., and Zhang, Z. (2019). Transcriptome profiling reveals candidate flavonol-related genes of Tetrastigma hemsleyanum under cold stress. BMC genomics 20, 1-15. DOI: https://doi.org/10.1186/s12864-019-6045-y

Pérez-Clemente, R. M., Vives, V., Zandalinas, S. I., López-Climent, M. F., Muñoz, V., and Gómez-Cadenas, A. (2013). Biotechnological approaches to study plant responses to stress. BioMed research international 2013. DOI: https://doi.org/10.1155/2013/654120

Pierre-Jerome, E., Drapek, C., and Benfey, P. N. (2018). Regulation of division and differentiation of plant stem cells. Annual review of cell and developmental biology 34, 289-310. DOI: https://doi.org/10.1146/annurev-cellbio-100617-062459

Pilet, P. (1975). Abscisic acid as a root growth inhibitor: physiological analyses. Planta 122, 299-302. DOI: https://doi.org/10.1007/BF00385279

Qin, F., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2011). Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant and cell physiology 52, 1569-1582. DOI: https://doi.org/10.1093/pcp/pcr106

Raz, V., Bergervoet, J. H., and Koornneef, M. (2001). Sequential steps for developmental arrest in Arabidopsis seeds. Development 128, 243-252. DOI: https://doi.org/10.1242/dev.128.2.243

Richardson, G. R., and Cowan, A. K. (1996). Development of an abscisic acid biosynthesizing cell-free system from flavedo of Citrus sinensis fruit. Journal of experimental botany 47, 455-464. DOI: https://doi.org/10.1093/jxb/47.3.455

Roelofs, D., Aarts, M., Schat, H., and Van Straalen, N. (2008). Functional ecological genomics to demonstrate general and specific responses to abiotic stress. Functional Ecology 22, 8-18. DOI: https://doi.org/10.1111/j.1365-2435.2007.01312.x

Rohmer, M. (1999). The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Natural product reports 16, 565-574. DOI: https://doi.org/10.1039/a709175c

Rohmer, M., Knani, M., Simonin, P., Sutter, B., and Sahm, H. (1993). Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochemical Journal 295, 517-524. DOI: https://doi.org/10.1042/bj2950517

Rook, F., Corke, F., Card, R., Munz, G., Smith, C., and Bevan, M. W. (2001). Impaired sucrose‐induction mutants reveal the modulation of sugar‐induced starch biosynthetic gene expression by abscisic acid signalling. The Plant Journal 26, 421-433. DOI: https://doi.org/10.1046/j.1365-313X.2001.2641043.x

Sadali, N. M., Sowden, R. G., Ling, Q., and Jarvis, R. P. (2019). Differentiation of chromoplasts and other plastids in plants. Plant Cell Reports 38, 803-818. DOI: https://doi.org/10.1007/s00299-019-02420-2

Sah, S. K., Reddy, K. R., and Li, J. (2016). Abscisic acid and abiotic stress tolerance in crop plants. Frontiers in plant science 7, 571. DOI: https://doi.org/10.3389/fpls.2016.00571

Sano, N., and Marion-Poll, A. (2021). ABA metabolism and homeostasis in seed dormancy and germination. International Journal of Molecular Sciences 22, 5069. DOI: https://doi.org/10.3390/ijms22105069

Schwartz, S. H., Qin, X., and Zeevaart, J. A. (2003). Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes, and enzymes. Plant physiology 131, 1591-1601. DOI: https://doi.org/10.1104/pp.102.017921

Schwartz, S. H., and Zeevaart, J. A. (2010). Abscisic acid biosynthesis and metabolism. In "Plant hormones: biosynthesis, signal transduction, action!", pp. 137-155. Springer. DOI: https://doi.org/10.1007/978-1-4020-2686-7_7

Seo, M., and Koshiba, T. (2002). Complex regulation of ABA biosynthesis in plants. Trends in Plant Science 7, 41-48. DOI: https://doi.org/10.1016/S1360-1385(01)02187-2

Seo, M., and Koshiba, T. (2011). Transport of ABA from the site of biosynthesis to the site of action. Journal of plant research 124, 501-507. DOI: https://doi.org/10.1007/s10265-011-0411-4

Seo, M., and Marion-Poll, A. (2019). Abscisic acid metabolism and transport. In "Advances in botanical research", Vol. 92, pp. 1-49. Elsevier. DOI: https://doi.org/10.1016/bs.abr.2019.04.004

Shah, S., Li, X., Jiang, Z., Fahad, S., and Hassan, S. (2022). Exploration of the phytohormone regulation of energy storage compound accumulation in microalgae. Food and Energy Security 11, e418. DOI: https://doi.org/10.1002/fes3.418

Shariatipour, N., and Heidari, B. (2018). Investigation of Drought and Salinity Tolerance Related Genes and their Regulatory Mechanisms in Arabidopsis (). The Open Bioinformatics Journal 11. DOI: https://doi.org/10.2174/1875036201811010012

Sharp, R. E., LeNoble, M. E., Else, M. A., Thorne, E. T., and Gherardi, F. (2000). Endogenous ABA maintains shoot growth in tomato independently of effects on plant water balance: evidence for an interaction with ethylene. Journal of experimental botany 51, 1575-1584. DOI: https://doi.org/10.1093/jexbot/51.350.1575

Shi, Y., and Yang, S. (2014). ABA regulation of the cold stress response in plants. Abscisic acid: metabolism, transport and signaling, 337-363. DOI: https://doi.org/10.1007/978-94-017-9424-4_17

Shigenaga, A. M., and Argueso, C. T. (2016). No hormone to rule them all: Interactions of plant hormones during the responses of plants to pathogens. In "Seminars in Cell & Developmental Biology", Vol. 56, pp. 174-189. Elsevier. DOI: https://doi.org/10.1016/j.semcdb.2016.06.005

Siewers, V., Smedsgaard, J., and Tudzynski, P. (2004). The P450 monooxygenase BcABA1 is essential for abscisic acid biosynthesis in Botrytis cinerea. Applied and Environmental Microbiology 70, 3868-3876. DOI: https://doi.org/10.1128/AEM.70.7.3868-3876.2004

Signora, L., De Smet, I., Foyer, C. H., and Zhang, H. (2001). ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis. The Plant Journal 28, 655-662. DOI: https://doi.org/10.1046/j.1365-313x.2001.01185.x

Singh, A., and Roychoudhury, A. (2023). Abscisic acid in plants under abiotic stress: Crosstalk with major phytohormones. Plant Cell Reports, 1-14. DOI: https://doi.org/10.1007/s00299-023-03013-w

Solymosi, K., and Keresztes, Á. (2012). Plastid structure, diversification and interconversions II. Land plants. Current chemical biology 6, 187-204. DOI: https://doi.org/10.2174/2212796811206030003

Spence, C., and Bais, H. (2015). Role of plant growth regulators as chemical signals in plant–microbe interactions: a double edged sword. Current opinion in plant biology 27, 52-58. DOI: https://doi.org/10.1016/j.pbi.2015.05.028

Spollen, W. G., LeNoble, M. E., Samuels, T. D., Bernstein, N., and Sharp, R. E. (2000). Abscisic acid accumulation maintains maize primary root elongation at low water potentials by restricting ethylene production. Plant physiology 122, 967-976. DOI: https://doi.org/10.1104/pp.122.3.967

Sreenivasulu, N., Harshavardhan, V. T., Govind, G., Seiler, C., and Kohli, A. (2012). Contrapuntal role of ABA: does it mediate stress tolerance or plant growth retardation under long-term drought stress? Gene 506, 265-273. DOI: https://doi.org/10.1016/j.gene.2012.06.076

Steuer, B., Stuhlfauth, T., and Fock, H. P. (1988). The efficiency of water use in water stressed plants is increased due to ABA induced stomatal closure. Photosynthesis research 18, 327-336. DOI: https://doi.org/10.1007/BF00034837

Swamy, P., and Smith, B. N. (1999). Role of abscisic acid in plant stress tolerance. Current science, 1220-1227.

Tarkowská, D., and Strnad, M. (2018). Isoprenoid-derived plant signaling molecules: biosynthesis and biological importance. Planta 247, 1051-1066. DOI: https://doi.org/10.1007/s00425-018-2878-x

Taylor, I. B., Burbidge, A., and Thompson, A. J. (2000). Control of abscisic acid synthesis. Journal of experimental botany 51, 1563-1574. DOI: https://doi.org/10.1093/jexbot/51.350.1563

Taylor, I. B., Sonneveld, T., Bugg, T. D., and Thompson, A. J. (2005). Regulation and manipulation of the biosynthesis of abscisic acid, including the supply of xanthophyll precursors. Journal of Plant Growth Regulation 24, 253-273. DOI: https://doi.org/10.1007/s00344-005-0070-6

Thakur, P., Kumar, S., Malik, J. A., Berger, J. D., and Nayyar, H. (2010). Cold stress effects on reproductive development in grain crops: an overview. Environmental and Experimental Botany 67, 429-443. DOI: https://doi.org/10.1016/j.envexpbot.2009.09.004

Thompson, A. J., Mulholland, B. J., Jackson, A. C., McKee, J. M., Hilton, H. W., Symonds, R. C., Sonneveld, T., Burbidge, A., Stevenson, P., and Taylor, I. B. (2007). Regulation and manipulation of ABA biosynthesis in roots. Plant, cell & environment 30, 67-78. DOI: https://doi.org/10.1111/j.1365-3040.2006.01606.x

Tuteja, N. (2007). Abscisic acid and abiotic stress signaling. Plant signaling & behavior 2, 135-138. DOI: https://doi.org/10.4161/psb.2.3.4156

Verslues, P., and Zhu, J.-K. (2005). Before and beyond ABA: upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress. Biochemical Society Transactions 33, 375-379. DOI: https://doi.org/10.1042/BST0330375

WAN, X.-R. (2004). Pathways and related enzymes of ABA biosynthesis in higher plants. Chinese Bulletin of Botany 21, 352.

Wani, S. H., and Kumar, V. (2015). Plant stress tolerance: engineering ABA: a potent phytohormone. Transcriptomics 3, 1000113. DOI: https://doi.org/10.4172/2329-8936.1000113

Wasilewska, A., Vlad, F., Sirichandra, C., Redko, Y., Jammes, F., Valon, C., dit Frey, N. F., and Leung, J. (2008). An update on abscisic acid signaling in plants and more…. Molecular Plant 1, 198-217. DOI: https://doi.org/10.1093/mp/ssm022

Welti, R., Li, W., Li, M., Sang, Y., Biesiada, H., Zhou, H.-E., Rajashekar, C., Williams, T. D., and Wang, X. (2002). Profiling membrane lipids in plant stress responses: role of phospholipase Dα in freezing-induced lipid changes in Arabidopsis. Journal of Biological Chemistry 277, 31994-32002. DOI: https://doi.org/10.1074/jbc.M205375200

Wilkinson, S., and Davies, W. J. (1997). Xylem sap pH increase: a drought signal received at the apoplastic face of the guard cell that involves the suppression of saturable abscisic acid uptake by the epidermal symplast. Plant physiology 113, 559-573. DOI: https://doi.org/10.1104/pp.113.2.559

Xiong, L., Schumaker, K. S., and Zhu, J.-K. (2002). Cell signaling during cold, drought, and salt stress. The plant cell 14, S165-S183. DOI: https://doi.org/10.1105/tpc.000596

Xiong, L., and Zhu, J.-K. (2003). Regulation of abscisic acid biosynthesis. Plant physiology 133, 29-36. DOI: https://doi.org/10.1104/pp.103.025395

Xu, Z.-Y., Kim, D. H., and Hwang, I. (2013). ABA homeostasis and signaling involving multiple subcellular compartments and multiple receptors. Plant Cell Reports 32, 807-813. DOI: https://doi.org/10.1007/s00299-013-1396-3

Yadav, S., Modi, P., Dave, A., Vijapura, A., Patel, D., and Patel, M. (2020). Effect of abiotic stress on crops. Sustainable crop production 3. DOI: https://doi.org/10.5772/intechopen.88434

Yamaguchi-Shinozaki, K., and Shinozaki, K. (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol. 57, 781-803. DOI: https://doi.org/10.1146/annurev.arplant.57.032905.105444

Yang, W., Liu, X.-D., Chi, X.-J., Wu, C.-A., Li, Y.-Z., Song, L.-L., Liu, X.-M., Wang, Y.-F., Wang, F.-W., and Zhang, C. (2011). Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways. Planta 233, 219-229. DOI: https://doi.org/10.1007/s00425-010-1279-6

Ye, N., Jia, L., and Zhang, J. (2012). ABA signal in rice under stress conditions. Rice 5, 1-9. DOI: https://doi.org/10.1186/1939-8433-5-1

Ye, N., and Zhang, J. (2012). Antagonism between abscisic acid and gibberellins is partially mediated by ascorbic acid during seed germination in rice. Plant signaling & behavior 7, 563-565. DOI: https://doi.org/10.4161/psb.19919

Yoshida, T., Christmann, A., Yamaguchi-Shinozaki, K., Grill, E., and Fernie, A. R. (2019). Revisiting the basal role of ABA–roles outside of stress. Trends in Plant Science 24, 625-635. DOI: https://doi.org/10.1016/j.tplants.2019.04.008

Zhang, F.-P., Sussmilch, F., Nichols, D. S., Cardoso, A. A., Brodribb, T. J., and McAdam, S. A. (2018). Leaves, not roots or floral tissue, are the main site of rapid, external pressure-induced ABA biosynthesis in angiosperms. Journal of experimental botany 69, 1261-1267. DOI: https://doi.org/10.1093/jxb/erx480

Zhang, F., Wan, X. Q., Zhang, H. Q., Liu, G. L., Jiang, M. Y., Pan, Y. Z., and Chen, Q. B. (2012). The effect of cold stress on endogenous hormones and CBF 1 homolog in four contrasting bamboo species. Journal of forest research 17, 72-78. DOI: https://doi.org/10.1007/s10310-011-0253-x

Zhang, F., Wang, P., Zou, Y.-N., Wu, Q.-S., and Kuča, K. (2019). Effects of mycorrhizal fungi on root-hair growth and hormone levels of taproot and lateral roots in trifoliate orange under drought stress. Archives of Agronomy and Soil Science 65, 1316-1330. DOI: https://doi.org/10.1080/03650340.2018.1563780

Zhang, H., Han, W., De Smet, I., Talboys, P., Loya, R., Hassan, A., Rong, H., Jürgens, G., Paul Knox, J., and Wang, M. H. (2010). ABA promotes quiescence of the quiescent centre and suppresses stem cell differentiation in the Arabidopsis primary root meristem. The Plant Journal 64, 764-774. DOI: https://doi.org/10.1111/j.1365-313X.2010.04367.x

Zhang, J., Jia, W., Yang, J., and Ismail, A. M. (2006). Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Research 97, 111-119. DOI: https://doi.org/10.1016/j.fcr.2005.08.018

Zhang, Y., Kilambi, H. V., Liu, J., Bar, H., Lazary, S., Egbaria, A., Ripper, D., Charrier, L., Belew, Z. M., and Wulff, N. (2021). ABA homeostasis and long-distance translocation are redundantly regulated by ABCG ABA importers. Science advances 7, eabf6069. DOI: https://doi.org/10.1126/sciadv.abf6069

Zhou, B., and Guo, Z. (2005). Effect of ABA and its biosynthesis inhibitor on chilling resistance and anti-oxidant enzymes activity. Acta Prataculturae Sinica 14, 94

Downloads

Published

20-07-2022

How to Cite

TAHIR, A., & ASHRAF, M. (2022). THE ROLE OF ABSCISIC ACID IN INDUCING COLD TOLERANCE IN PLANTS. Journal of Life and Social Sciences, 2022(1), 2. https://doi.org/10.64013/bbasrjlifess.v2022i1.2

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.