GENETICALLY MODIFIED CROPS GLOBAL REGULATION: IMPLICATIONS FOR FOOD SECURITY AND ENVIRONMENTAL SUSTAINABILITY

Authors

  • MA ULLAH Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan Author
  • MA AHMED Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan Author
  • I JAVED Department of Plant Breeding and Genetics, Pir Mehr Ali Shah Arid Agriculture University, P.O BOX.46000, Rawalpindi, Pakistan Author
  • M SHAFIQ Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan Author
  • SHUH SHERAZI Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan Author
  • R WALEED Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan Author

Keywords:

Genetic engineering , herbicide tolerance, insect resistance, abiotic stress, disease resistance

Abstract

Genetic engineering and plant transformation play crucial roles in enhancing crops by introducing beneficial foreign genes or suppressing native gene expression. Genetically modified crops offer advantages such as herbicide tolerance, insect resistance, tolerance to abiotic stress, disease resistance, and improved nutrition. Transgenic technology integration has shown significant advantages, such as increased crop yields, less dependence on pesticides and insecticides, decreased CO2 emissions, and decreased crop production costs. In contrast to transgenic crops, some other techniques can help produce crops without foreign genes, which may gain more consumer acceptance and quicker regulatory approvals. This review provides an extensive overview of various accomplishments in genetic modifications and their present status.

Downloads

Download data is not yet available.

References

Altenbach, S. B., C.-C. Kuo, L. C. Staraci, K. W. Pearson, C. Wainwright, A. Georgescu, and J. Townsend. 1992. Accumulation of a Brazil nut albumin in seeds of transgenic canola results in enhanced levels of seed protein methionine. Plant molecular biology 18:235-245.

Anderson, M., M. Whitecross, and T. Higgins. 1999. Transgenic tobacco and peas expressing a proteinase inhibitor from Nicotiana alata have increased insect resistance.

Anjaneyulu, E., P. S. Reddy, M. S. Sunita, P. B. K. Kishor, and B. Meriga. 2014. Salt tolerance and activity of antioxidative enzymes of transgenic finger millet overexpressing a vacuolar H+-pyrophosphatase gene (SbVPPase) from Sorghum bicolor. Journal of plant physiology 171:789-798.

Arpaia, S., G. Mennella, V. Onofaro, E. Perri, F. Sunseri, and G. Rotino. 1997. Production of transgenic eggplant (Solanum melongena L.) resistant to Colorado potato beetle (Leptinotarsa decemlineata Say). Theoretical and Applied Genetics 95:329-334.

Babu, R. C., J. Zhang, A. Blum, T.-H. D. Ho, R. Wu, and H. Nguyen. 2004. HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Science 166:855-862.

Bezirganoglu, I., S.-Y. Hwang, T. J. Fang, and J.-F. Shaw. 2013. Transgenic lines of melon (Cucumis melo L. var. makuwa cv.‘Silver Light’) expressing antifungal protein and chitinase genes exhibit enhanced resistance to fungal pathogens. Plant Cell, Tissue and Organ Culture (PCTOC) 112:227-237.

Bhatnagar-Mathur, P., J. S. Rao, V. Vadez, S. R. Dumbala, A. Rathore, K. Yamaguchi-Shinozaki, and K. K. Sharma. 2014. Transgenic peanut overexpressing the DREB1A transcription factor has higher yields under drought stress. Molecular Breeding 33:327-340.

Bolar, J. P., J. L. Norelli, K.-W. Wong, C. K. Hayes, G. E. Harman, and H. S. Aldwinckle. 2000. Expression of endochitinase from Trichoderma harzianum in transgenic apple increases resistance to apple scab and reduces vigor. Phytopathology 90:72-77.

Botella, J. R., A. S. Cavallaro, and C. I. Cazzonelli. 1998. Towards the production of transgenic pineapple to control flowering and ripening. Pages 115-122 in III International Pineapple Symposium 529.

Cahoon, E. B., S. E. Hall, K. G. Ripp, T. S. Ganzke, W. D. Hitz, and S. J. Coughlan. 2003. Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nature biotechnology 21:1082-1087.

Cai, Y., L. Chen, X. Liu, C. Guo, S. Sun, C. Wu, B. Jiang, T. Han, and W. Hou. 2018. CRISPR/Cas9‐mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant biotechnology journal 16:176-185.

Cardoso, S. C., J. M. Barbosa-Mendes, R. L. Boscariol-Camargo, R. S. C. Christiano, A. B. Filho, M. L. C. Vieira, B. M. J. Mendes, and F. d. A. A. Mourão Filho. 2010. Transgenic sweet orange (Citrus sinensis L. Osbeck) expressing the attacin A gene for resistance to Xanthomonas citri subsp. citri. Plant Molecular Biology Reporter 28:185-192.

Chakraborty, S., N. Chakraborty, and A. Datta. 2000. Increased nutritive value of transgenic potato by expressing a nonallergenic seed albumin gene from Amaranthus hypochondriacus. Proceedings of the National Academy of Sciences 97:3724-3729.

Chapman, K. D., S. Austin‐Brown, S. A. Sparace, A. J. Kinney, K. G. Ripp, I. L. Pirtle, and R. M. Pirtle. 2001. Transgenic cotton plants with increased seed oleic acid content. Journal of the American Oil Chemists' Society 78:941-947.

Chauhan, H., N. Khurana, A. Nijhavan, J. P. Khurana, and P. Khurana. 2012. The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress. Plant, cell & environment 35:1912-1931.

Chen, H., L. Liu, L. Wang, S. Wang, and X. Cheng. 2016. VrDREB2A, a DREB-binding transcription factor from Vigna radiata, increased drought and high-salt tolerance in transgenic Arabidopsis thaliana. Journal of plant research 129:263-273.

Chen, R., G. Xue, P. Chen, B. Yao, W. Yang, Q. Ma, Y. Fan, Z. Zhao, M. C. Tarczynski, and J. Shi. 2008. Transgenic maize plants expressing a fungal phytase gene. Transgenic Research 17:633-643.

Chen, Z., T. E. Young, J. Ling, S.-C. Chang, and D. R. Gallie. 2003. Increasing vitamin C content of plants through enhanced ascorbate recycling. Proceedings of the National Academy of Sciences 100:3525-3530.

Cheng, C., Y. Zhang, X. Chen, J. Song, Z. Guo, K. Li, and K. Zhang. 2018. Co-expression of AtNHX1 and TsVP improves the salt tolerance of transgenic cotton and increases seed cotton yield in a saline field. Molecular Breeding 38:1-15.

Chowdhury, S., A. Basu, and S. Kundu. 2017. Overexpression of a new osmotin-like protein gene (SindOLP) confers tolerance against biotic and abiotic stresses in sesame. Frontiers in Plant Science 8:410.

Citadin, C., A. Cruz, and F. Aragão. 2013. Development of transgenic imazapyr-tolerant cowpea (Vigna unguiculata). Plant cell reports 32:537-543.

Clemente, T. E., and E. B. Cahoon. 2009. Soybean oil: genetic approaches for modification of functionality and total content. Plant physiology 151:1030-1040.

Costantini, E., L. Landi, O. Silvestroni, T. Pandolfini, A. Spena, and B. Mezzetti. 2007. Auxin synthesis-encoding transgene enhances grape fecundity. Plant physiology 143:1689-1694.

Cruz, A., and F. Aragão. 2014. RNA i‐based enhanced resistance to C owpea severe mosaic virus and C owpea aphid‐borne mosaic virus in transgenic cowpea. Plant pathology 63:831-837.

Das, A., P. S. Basu, M. Kumar, J. Ansari, A. Shukla, S. Thakur, P. Singh, S. Datta, S. K. Chaturvedi, and M. Sheshshayee. 2021. Transgenic chickpea (Cicer arietinum L.) harbouring AtDREB1a are physiologically better adapted to water deficit. BMC Plant Biology 21:1-17.

Davuluri, G. R., A. Van Tuinen, P. D. Fraser, A. Manfredonia, R. Newman, D. Burgess, D. A. Brummell, S. R. King, J. Palys, and J. Uhlig. 2005. Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nature biotechnology 23:890-895.

Dhekney, S. A., Z. T. Li, and D. J. Gray. 2011. Grapevines engineered to express cisgenic Vitis vinifera thaumatin-like protein exhibit fungal disease resistance. In Vitro Cellular & Developmental Biology-Plant 47:458-466.

Diretto, G., R. Tavazza, R. Welsch, D. Pizzichini, F. Mourgues, V. Papacchioli, P. Beyer, and G. Giuliano. 2006. Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase. BMC Plant Biology 6:1-11.

Dolde, D., and T. Wang. 2011. Oxidation of crude corn oil with and without elevated tocotrienols. Journal of the American Oil Chemists' Society 88:1367-1372.

Ellul, P., G. Rios, A. Atares, L. Roig, R. Serrano, and V. Moreno. 2003. The expression of the Saccharomyces cerevisiae HAL1 gene increases salt tolerance in transgenic watermelon [Citrullus lanatus (Thunb.) Matsun. & Nakai.]. Theoretical and Applied Genetics 107:462-469.

Fagoaga, C., I. Rodrigo, V. Conejero, C. Hinarejos, J. J. Tuset, J. Arnau, J. A. Pina, L. Navarro, and L. Peña. 2001. Increased tolerance to Phytophthora citrophthora in transgenic orange plants constitutively expressing a tomato pathogenesis related protein PR-5. Molecular Breeding 7:175-185.

Faria, J. C., M. M. Albino, B. B. Dias, L. J. Cançado, N. B. da Cunha, L. d. M. Silva, G. R. Vianna, and F. J. Aragão. 2006. Partial resistance to Bean golden mosaic virus in a transgenic common bean (Phaseolus vulgaris L.) line expressing a mutated rep gene. Plant Science 171:565-571.

Ferreira, A. L., J. C. d. Faria, M. da Costa Moura, A. L. de Mendonça Zaidem, C. S. R. Pizetta, E. de Oliveira Freitas, G. R. C. Coelho, J. A. F. Barrigossi, L. V. Hoffmann, and T. L. P. O. de Souza. 2022. Whitefly-tolerant transgenic common bean (Phaseolus vulgaris) line. Frontiers in Plant Science 13:984804.

Ferreira, S., K. Pitz, R. Manshardt, F. Zee, M. Fitch, and D. Gonsalves. 2002. Virus coat protein transgenic papaya provides practical control of papaya ringspot virus in Hawaii. Plant Disease 86:101-105.

Foti, C., and O. I. Pavli. 2020. High-efficiency Agrobacterium rhizogenes-mediated transgenic hairy root induction of Lens culinaris. Agronomy 10:1170.

Fraser, P. D., E. M. Enfissi, J. M. Halket, M. R. Truesdale, D. Yu, C. Gerrish, and P. M. Bramley. 2007. Manipulation of phytoene levels in tomato fruit: effects on isoprenoids, plastids, and intermediary metabolism. The Plant Cell 19:3194-3211.

Fuchs, M., D. M. Tricoli, K. J. Carney, M. Schesser, J. R. McFerson, and D. Gonsalves. 1998. Comparative virus resistance and fruit yield of transgenic squash with single and multiple coat protein genes. Plant Disease 82:1350-1356.

Ganapathi, T., N. Higgs, P. Balint-Kurti, C. Arntzen, G. May, and J. Van Eck. 2001. Agrobacterium-mediated transformation of embryogenic cell suspensions of the banana cultivar Rasthali (AAB). Plant cell reports 20:157-162.

Houde, M., S. Dallaire, D. N'Dong, and F. Sarhan. 2004. Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant biotechnology journal 2:381-387.

Huo, L., X. Sun, Z. Guo, X. Jia, R. Che, Y. Sun, Y. Zhu, P. Wang, X. Gong, and F. Ma. 2020. MdATG18a overexpression improves basal thermotolerance in transgenic apple by decreasing damage to chloroplasts. Horticulture research 7.

Hussain, F., and M. Abid. 2011. Pest and diseases of chilli crop in Pakistan: A review. Int. J. Biol. Biotech 8:325-332.

Huttner, E., W. Tucker, A. Vermeulen, F. Ignart, B. Sawyer, and R. Birch. 2001. Ribozyme genes protecting transgenic melon plants against potyviruses. Current Issues in Molecular Biology 3:27-34.

Ignacimuthu, S., and S. A. Ceasar. 2012. Development of transgenic finger millet (Eleusine coracana (L.) Gaertn.) resistant to leaf blast disease. Journal of Biosciences 37:135-147.

Iqbal, M. M., F. Nazir, S. Ali, M. A. Asif, Y. Zafar, J. Iqbal, and G. M. Ali. 2012. Over expression of rice chitinase gene in transgenic peanut (Arachis hypogaea L.) improves resistance against leaf spot. Molecular biotechnology 50:129-136.

Jin, W., J. Dong, Y. Hu, Z. Lin, X. Xu, and Z. Han. 2009. Improved cold-resistant performance in transgenic grape (Vitis vinifera L.) overexpressing cold-inducible transcription factors AtDREB1b. HortScience 44:35-39.

Jung, S., H.-J. Lee, Y. Lee, K. Kang, Y. S. Kim, B. Grimm, and K. Back. 2008. Toxic tetrapyrrole accumulation in protoporphyrinogen IX oxidase-overexpressing transgenic rice plants. Plant molecular biology 67:535-546.

Kamçı, H. 2011. Genetic transformation of lentil (Lens culinaris m. cv. Sultan. 1) with a transcription factor regulator (MBF1c) and analysis of transgenic plants.

Kamthan, A., M. Kamthan, M. Azam, N. Chakraborty, S. Chakraborty, and A. Datta. 2012. Expression of a fungal sterol desaturase improves tomato drought tolerance, pathogen resistance and nutritional quality. Scientific reports 2:951.

Kar, S., D. Basu, S. Das, N. A. Ramkrishnan, P. Mukherjee, P. Nayak, and S. K. Sen. 1997. Expression of cryIA (c) gene of Bacillus thuringiensis in transgenic chickpea plants inhibits development of pod-borer (Heliothis armigera) larvae. Transgenic Research 6:177-185.

Khatib, F., A. Makris, K. Yamaguchi-Shinozaki, S. Kumar, A. Sarker, W. Erskine, and M. Baum. 2011. Expression of the DREB1A gene in lentil (Lens culinaris Medik. subsp. culinaris) transformed with the Agrobacterium system. Crop and Pasture Science 62:488-495.

Kobayashi, A. K., L. G. E. Vieira, J. C. Bespalhok Filho, R. P. Leite, L. F. P. Pereira, H. B. C. Molinari, and V. V. Marques. 2017. Enhanced resistance to citrus canker in transgenic sweet orange expressing the sarcotoxin IA gene. European Journal of plant pathology 149:865-873.

Kumar, A., R. Jaiwal, R. Sreevathsa, D. Chaudhary, and P. K. Jaiwal. 2021. Transgenic cowpea plants expressing Bacillus thuringiensis Cry2Aa insecticidal protein imparts resistance to Maruca vitrata legume pod borer. Plant cell reports 40:583-594.

Kumar, A. M., S. Sundaresha, and R. Sreevathsa. 2009. Resistance to Alternaria leaf spot disease in transgenic safflower (Carthamus tictorius L.) harboring a rice chitinase gene. Transgenic Plant J 3:113-118.

Kumar, G. S., T. Ganapathi, C. Revathi, L. Srinivas, and V. Bapat. 2005. Expression of hepatitis B surface antigen in transgenic banana plants. Planta 222:484-493.

Kumar, S., A. Kalita, R. Srivastava, and L. Sahoo. 2017. Co-expression of Arabidopsis NHX1 and bar improves the tolerance to salinity, oxidative stress, and herbicide in transgenic mungbean. Frontiers in Plant Science 8:1896.

Lee, S., D. P. Persson, T. H. Hansen, S. Husted, J. K. Schjoerring, Y. S. Kim, U. S. Jeon, Y. K. Kim, Y. Kakei, and H. Masuda. 2011. Bio‐available zinc in rice seeds is increased by activation tagging of nicotianamine synthase. Plant biotechnology journal 9:865-873.

Lee, T. T., M. M. Wang, R. C. Hou, L.-J. Chen, R.-C. Su, C.-S. Wang, and J. T. Tzen. 2003. Enhanced methionine and cysteine levels in transgenic rice seeds by the accumulation of sesame 2S albumin. Bioscience, biotechnology, and biochemistry 67:1699-1705.

Luchakivskaya, Y., O. Kishchenko, I. Gerasymenko, Z. Olevinskaya, Y. Simonenko, M. Spivak, and M. Kuchuk. 2011. High-level expression of human interferon alpha-2b in transgenic carrot (Daucus carota L.) plants. Plant cell reports 30:407-415.

Lynch, R., B. Wiseman, D. Plaisted, and D. Warnick. 1999. Evaluation of transgenic sweet corn hybrids expressing CryIA (b) toxin for resistance to corn earworm and fall armyworm (Lepidoptera: Noctuidae). Journal of Economic Entomology 92:246-252.

Ma, X., X. Cui, J. Li, C. Li, and Z. Wang. 2017. Peptides from sesame cake reduce oxidative stress and amyloid-β-induced toxicity by upregulation of SKN-1 in a transgenic Caenorhabditis elegans model of Alzheimer’s disease. Journal of functional foods 39:287-298.

Matusiewicz, M., I. Kosieradzka, M. Zuk, and J. Szopa. 2014. Genetically modified flax expressing NAP-SsGT1 transgene: Examination of anti-inflammatory action. International Journal of Molecular Sciences 15:16741-16759.

McCabe, M. S., L. C. Garratt, F. Schepers, W. J. Jordi, G. M. Stoopen, E. Davelaar, J. H. A. van Rhijn, J. B. Power, and M. R. Davey. 2001. Effects of PSAG12-IPT gene expression on development and senescence in transgenic lettuce. Plant physiology 127:505-516.

Mishra, S., R. Behura, J. P. Awasthi, M. Dey, D. Sahoo, S. S. Das Bhowmik, S. K. Panda, and L. Sahoo. 2014. Ectopic overexpression of a mungbean vacuolar Na+/H+ antiporter gene (VrNHX1) leads to increased salinity stress tolerance in transgenic Vigna unguiculata L. Walp. Molecular Breeding 34:1345-1359.

Muddanuru, T., A. K. Polumetla, L. Maddukuri, and S. Mulpuri. 2019. Development and evaluation of transgenic castor (Ricinus communis L.) expressing the insecticidal protein Cry1Aa of Bacillus thuringiensis against lepidopteran insect pests. Crop Protection 119:113-125.

Murata, M., M. Nishimura, N. Murai, M. HARUTA, S. HOMMA, and Y. ITOH. 2001. A transgenic apple callus showing reduced polyphenol oxidase activity and lower browning potential. Bioscience, biotechnology, and biochemistry 65:383-388.

Mushke, R., R. Yarra, and P. Kirti. 2019. Improved salinity tolerance and growth performance in transgenic sunflower plants via ectopic expression of a wheat antiporter gene (TaNHX2). Molecular Biology Reports 46:5941-5953.

Nalluri, N., and V. Karri. 2023. Over-expression of Trigonella foenum-graecum defensin (Tfgd2) and Raphanus sativus antifungal protein (RsAFP2) in transgenic pigeonpea confers resistance to the Helicoverpa armigera. Plant Cell, Tissue and Organ Culture (PCTOC) 152:569-582.

Neskorodov, Y. B., A. Rakitin, A. Kamionskaya, and K. Skryabin. 2010. Developing phosphinothricin-resistant transgenic sunflower (Helianthus annuus L.) plants. Plant Cell, Tissue and Organ Culture (PCTOC) 100:65-71.

Oraby, H., and R. Ahmad. 2012. Physiological and biochemical changes of CBF3 transgenic oat in response to salinity stress. Plant Science 185:331-339.

Park, B.-J., Z. Liu, A. Kanno, and T. Kameya. 2005. Increased tolerance to salt-and water-deficit stress in transgenic lettuce (Lactuca sativa L.) by constitutive expression of LEA. Plant growth regulation 45:165-171.

Park, S., C.-K. Kim, L. M. Pike, R. H. Smith, and K. D. Hirschi. 2004. Increased calcium in carrots by expression of an Arabidopsis H+/Ca 2+ transporter. Molecular Breeding 14:275-282.

Pasquali, G., S. Biricolti, F. Locatelli, E. Baldoni, and M. Mattana. 2008. Osmyb4 expression improves adaptive responses to drought and cold stress in transgenic apples. Plant cell reports 27:1677-1686.

Patel, M. K., M. Joshi, A. Mishra, and B. Jha. 2015. Ectopic expression of SbNHX1 gene in transgenic castor (Ricinus communis L.) enhances salt stress by modulating physiological process. Plant Cell, Tissue and Organ Culture (PCTOC) 122:477-490.

Pospíšilová, H., E. Jiskrova, P. Vojta, K. Mrizova, F. Kokáš, M. M. Čudejková, V. Bergougnoux, O. Plíhal, J. Klimešová, and O. Novák. 2016. Transgenic barley overexpressing a cytokinin dehydrogenase gene shows greater tolerance to drought stress. New biotechnology 33:692-705.

Prabhavathi, V., J. Yadav, P. Kumar, and M. Rajam. 2002. Abiotic stress tolerance in transgenic eggplant (Solanum melongena L.) by introduction of bacterial mannitol phosphodehydrogenase gene. Molecular Breeding 9:137-147.

Qin, Y., J. A. T. da Silva, L. Zhang, and S. Zhang. 2008. Transgenic strawberry: state of the art for improved traits. Biotechnology Advances 26:219-232.

Rajasekaran, K., J. W. Cary, J. M. Jaynes, and T. E. Cleveland. 2005. Disease resistance conferred by the expression of a gene encoding a synthetic peptide in transgenic cotton (Gossypium hirsutum L.) plants. Plant biotechnology journal 3:545-554.

Rout, G. R., A. Bansal, D. Swain, K. R. Jadhao, R. G. Shelke, and S. K. Panda. 2020. Overexpression of ICE1 gene in mungbean (Vigna radiata L.) for cold tolerance. Plant Cell, Tissue and Organ Culture (PCTOC) 143:593-608.

Sahoo, D. P., S. Kumar, S. Mishra, Y. Kobayashi, S. K. Panda, and L. Sahoo. 2016. Enhanced salinity tolerance in transgenic mungbean overexpressing Arabidopsis antiporter (NHX1) gene. Molecular Breeding 36:1-15.

Sarkar, T., R. Thankappan, A. Kumar, G. P. Mishra, and J. R. Dobaria. 2016. Stress inducible expression of AtDREB1A transcription factor in transgenic peanut (Arachis hypogaea L.) conferred tolerance to soil-moisture deficit stress. Frontiers in Plant Science 7:935.

Schestibratov, K., and S. Dolgov. 2005. Transgenic strawberry plants expressing a thaumatin II gene demonstrate enhanced resistance to Botrytis cinerea. Scientia Horticulturae 106:177-189.

Schmidt, M. A., W. A. Parrott, D. F. Hildebrand, R. H. Berg, A. Cooksey, K. Pendarvis, Y. He, F. McCarthy, and E. M. Herman. 2015. Transgenic soya bean seeds accumulating β‐carotene exhibit the collateral enhancements of oleate and protein content traits. Plant biotechnology journal 13:590-600.

Schroeder, H. E., S. Gollasch, A. Moore, L. M. Tabe, S. Craig, D. C. Hardie, M. J. Chrispeels, D. Spencer, and T. J. Higgins. 1995. Bean [alpha]-amylase inhibitor confers resistance to the pea weevil (Bruchus pisorum) in transgenic peas (Pisum sativum L.). Plant physiology 107:1233-1239.

Shu, X., L. Ding, B. Gu, H. Zhang, P. Guan, and J. Zhang. 2021. A stress associated protein from Chinese wild Vitis amurensis, VaSAP15, enhances the cold tolerance of transgenic grapes. Scientia Horticulturae 285:110147.

Singh, D., A. Ambroise, R. Haicour, D. Sihachakr, and M. V. Rajam. 2014. Increased resistance to fungal wilts in transgenic eggplant expressing alfalfa glucanase gene. Physiology and Molecular Biology of Plants 20:143-150.

Singsit, C., M. J. Adang, R. E. Lynch, W. F. Anderson, A. Wang, G. Cardineau, and P. Ozias-Akins. 1997. Expression of a Bacillus thuringiensis cryIA (c) gene in transgenic peanut plants and its efficacy against lesser cornstalk borer. Transgenic Research 6:169-176.

Snow, A., D. Pilson, L. H. Rieseberg, M. Paulsen, N. Pleskac, M. Reagon, D. Wolf, and S. Selbo. 2003. A Bt transgene reduces herbivory and enhances fecundity in wild sunflowers. Ecological applications 13:279-286.

Solleti, S. K., S. Bakshi, J. Purkayastha, S. K. Panda, and L. Sahoo. 2008. Transgenic cowpea (Vigna unguiculata) seeds expressing a bean α-amylase inhibitor 1 confer resistance to storage pests, bruchid beetles. Plant cell reports 27:1841-1850.

Soltész, A., M. Smedley, I. Vashegyi, G. Galiba, W. Harwood, and A. Vágújfalvi. 2013. Transgenic barley lines prove the involvement of TaCBF14 and TaCBF15 in the cold acclimation process and in frost tolerance. Journal of experimental botany 64:1849-1862.

Sreedharan, S., U. K. Shekhawat, and T. R. Ganapathi. 2013. Transgenic banana plants overexpressing a native plasma membrane aquaporin M usa PIP 1; 2 display high tolerance levels to different abiotic stresses. Plant biotechnology journal 11:942-952.

Sripaoraya, S., S. Keawsompong, P. Insupa, J. Power, M. Davey, and P. Srinives. 2006. Genetically manipulated pineapple: transgene stability, gene expression and herbicide tolerance under field conditions. Plant breeding 125:411-413.

Stearns, J. C., S. Shah, B. M. Greenberg, D. G. Dixon, and B. R. Glick. 2005. Tolerance of transgenic canola expressing 1-aminocyclopropane-1-carboxylic acid deaminase to growth inhibition by nickel. Plant Physiology and Biochemistry 43:701-708.

Stewart Jr, C. N., M. J. Adang, J. N. All, P. L. Raymer, S. Ramachandran, and W. A. Parrott. 1996. Insect control and dosage effects in transgenic canola containing a synthetic Bacillus thuringiensis cryIAc gene. Plant physiology 112:115-120.

Stewart, S., J. Adamczyk Jr, K. Knighten, and F. Davis. 2001. Impact of Bt cottons expressing one or two insecticidal proteins of Bacillus thuringiensis Berliner on growth and survival of noctuid (Lepidoptera) larvae. Journal of Economic Entomology 94:752-760.

Storozhenko, S., V. De Brouwer, M. Volckaert, O. Navarrete, D. Blancquaert, G.-F. Zhang, W. Lambert, and D. Van Der Straeten. 2007. Folate fortification of rice by metabolic engineering. Nature biotechnology 25:1277-1279.

Sturtevant, A. H. 1913. The linear arrangement of six sex? linked factors in Drosophila, as shown by their mode of association. Journal of experimental zoology 14:43-59.

Sun, X. e., X. x. Feng, C. Li, Z. p. Zhang, and L. j. Wang. 2015. Study on salt tolerance with YHem1 transgenic canola (Brassica napus). Physiologia plantarum 154:223-242.

Sunilkumar, G., L. M. Campbell, L. Puckhaber, R. D. Stipanovic, and K. S. Rathore. 2006. Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proceedings of the National Academy of Sciences 103:18054-18059.

Takahashi, M., H. Nakanishi, S. Kawasaki, N. K. Nishizawa, and S. Mori. 2001. Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nature biotechnology 19:466-469.

Upadhyaya, C. P., K. E. Young, N. Akula, H. soon Kim, J. J. Heung, O. M. Oh, C. R. Aswath, S. C. Chun, D. H. Kim, and S. W. Park. 2009. Over-expression of strawberry D-galacturonic acid reductase in potato leads to accumulation of vitamin C with enhanced abiotic stress tolerance. Plant Science 177:659-667.

Vanjildorj, E., T.-W. Bae, K.-Z. Riu, S.-Y. Kim, and H.-Y. Lee. 2005. Overexpression of Arabidopsis ABF3 gene enhances tolerance to droughtand cold in transgenic lettuce (Lactuca sativa). Plant Cell, Tissue and Organ Culture 83:41-50.

Vijayan, S., and P. Kirti. 2012. Mungbean plants expressing BjNPR1 exhibit enhanced resistance against the seedling rot pathogen, Rhizoctonia solani. Transgenic Research 21:193-200.

Wang, C., J. Zeng, Y. Li, W. Hu, L. Chen, Y. Miao, P. Deng, C. Yuan, C. Ma, and X. Chen. 2014. Enrichment of provitamin A content in wheat (Triticum aestivum L.) by introduction of the bacterial carotenoid biosynthetic genes CrtB and CrtI. Journal of experimental botany 65:2545-2556.

Wang, Z., M. Yang, Y. Sun, Q. Yang, L. Wei, Y. Shao, G. Bao, and W. Li. 2019. Overexpressing Sesamum indicum L.’s DGAT1 increases the seed oil content of transgenic soybean. Molecular Breeding 39:1-9.

Wirth, J., S. Poletti, B. Aeschlimann, N. Yakandawala, B. Drosse, S. Osorio, T. Tohge, A. R. Fernie, D. Günther, and W. Gruissem. 2009. Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin. Plant biotechnology journal 7:631-644.

Xiaoyan, S., Z. Yan, and W. Shubin. 2012. Improvement Fe content of wheat (Triticum aestivum) grain by soybean ferritin expression cassette without vector backbone sequence. Journal of Agricultural Biotechnology.

Xu, X., T. Vanhercke, P. Shrestha, J. Luo, S. Akbar, C. Konik-Rose, L. Venugoban, D. Hussain, L. Tian, and S. Singh. 2019. Upregulated lipid biosynthesis at the expense of starch production in potato (Solanum tuberosum) vegetative tissues via simultaneous downregulation of ADP-glucose pyrophosphorylase and sugar dependent1 expressions. Frontiers in Plant Science 10:1444.

Yadav, J. S., E. Ogwok, H. Wagaba, B. L. Patil, B. Bagewadi, T. Alicai, E. GAITAN‐SOLIS, N. J. Taylor, and C. M. Fauquet. 2011. RNAi‐mediated resistance to Cassava brown streak Uganda virus in transgenic cassava. Molecular plant pathology 12:677-687.

Ye, X., S. Al-Babili, A. Kloti, J. Zhang, P. Lucca, P. Beyer, and I. Potrykus. 2000. Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303-305.

Yip, M.-K., S.-W. Lee, K.-C. Su, Y.-H. Lin, T.-Y. Chen, and T.-Y. Feng. 2011. An easy and efficient protocol in the production of pflp transgenic banana against Fusarium wilt. Plant Biotechnology Reports 5:245-254.

Yu, T.-A., C.-H. Chiang, H.-W. Wu, C.-M. Li, C.-F. Yang, J.-H. Chen, Y.-W. Chen, and S.-D. Yeh. 2011. Generation of transgenic watermelon resistant to Zucchini yellow mosaic virus and Papaya ringspot virus type W. Plant cell reports 30:359-371.

Zhao, Z.-y., K. Glassman, V. Sewalt, N. Wang, M. Miller, S. Chang, T. Thompson, S. Catron, E. Wu, and D. Bidney. 2003. Nutritionally improved transgenic sorghum. Pages 413-416 in Plant Biotechnology 2002 and Beyond: Proceedings of the 10 th IAPTC&B Congress June 23–28, 2002 Orlando, Florida, USA. Springer.

Zhou, M., S. Guo, S. Tian, J. Zhang, Y. Ren, G. Gong, C. Li, H. Zhang, and Y. Xu. 2020. Overexpression of the watermelon ethylene response factor ClERF069 in transgenic tomato resulted in delayed fruit ripening. Horticultural Plant Journal 6:247-256.

Andersson, M. S., et al. (2013). Biofortified cassava reduces child malnutrition in Mozambique. Nature Plant, 1(6), 14001.

Bouis, H., & Saltzman, A. (2017). Biofortification: A discussion document. Development Studies in Brief, 13*(8), 1-8.

Bouis, H., & Welch, R. M. (2010). Biofortification of vitamin A to overcome micronutrient malnutrition. The Journal of Nutrition, 140(6), 2030S-2035S.

DHA-Omega3 Consortium. (2005). Developing plants as a sustainable source of DHA omega-3 fatty acids. Plant Biotechnology Journal, 3(4), 409-414.

Domingo, J. L. (2017). Nutritional and safety assessment of genetically modified (GM) foodcrops. Critical Reviews in Food Science and Nutrition, 57(1), 19

Bai, L., et al. (2018). HarvestPlus golden rice biofortification impact on vitamin A status in rural women and children in Bangladesh: a cluster-randomized controlled trial. American Journal of Clinical Nutrition, 108(2), 277-288.

Domingo, J. L. (2017). Safety assessment of genetically modified foods based on real-world evidence. Frontiers in Public Health, 5, 281.

Gibson, R. S. (2012). Micronutrient deficiencies and global health problems. Nutrition Reviews, 70(1), 30-35.

Graham, R. D., et al. (2021). HarvestPlus zinc and iron biofortified rice in Vietnam: efficacy of intragenerational selection for enhanced grain mineral content, agronomic performance, and consumer acceptance. Field Crops Research, 264, 108182.

Howe, P., et al. (2012). Lysine biosynthesis in plants: approaches for increasing the nutritional value of cereals and legumes. The Plant Journal, 70(3), 381-391.

Liu, B., et al. (2020). Modifying fatty acid composition in plants: a biotechnological approach. Trends in Plant Science, 25(3), 296-307.

Pardey, P. G., et al. (2016). Access to improved germplasm and crop varieties: are public goods regimes still relevant? AgBioForum, 19(2), 153-172.

Wolt, J. D. (2016). Gene editing and the future of agriculture. Cell, 165(6), 1293-1302.

Wolfenbarger, L. L., & Phifer, P. R. (2000). The ecological risks of transgenic crops. American Scientist, 88(3), 208-217.

Ye, X., et al. (2000). Engineering the provitamin A (beta-carotene) biosynthetic pathway into rice endosperm. Science, 287(5454), 303

Ahmar, S., T. Mahmood, S. Fiaz, F. Mora-Poblete, M. S. Shafique, M. S. Chattha, and K.-H. Jung. 2021. Advantage of nanotechnology-based genome editing system and its application in crop improvement. Frontiers in Plant Science 12:663849.

Akbar, S., Y. Wei, and M.-Q. Zhang. 2022. RNA interference: Promising approach to combat plant viruses. International Journal of Molecular Sciences 23:5312.

Caradus, J. R. 2023. Processes for regulating genetically modified and gene edited plants. GM Crops & Food:1-41.

De Souza, C. P., and E. Bonciu. 2022. Progress in genomics and biotechnology, the key to ensuring food security. Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development 22:149-157.

Garrigou, A., C. Laurent, A. Berthet, C. Colosio, N. Jas, V. Daubas-Letourneux, J.-M. Jackson Filho, J.-N. Jouzel, O. Samuel, and I. Baldi. 2020. Critical review of the role of PPE in the prevention of risks related to agricultural pesticide use. Safety science 123:104527.

Green, J. M., and D. L. Siehl. 2021. History and outlook for glyphosate-resistant crops. Reviews of Environmental Contamination and Toxicology Volume 255: Glyphosate:67-91.

Kamatham, S., S. Munagapati, K. N. Manikanta, R. Vulchi, K. Chadipiralla, S. H. Indla, and U. S. Allam. 2021. Recent advances in engineering crop plants for resistance to insect pests. Egyptian Journal of Biological Pest Control 31:1-14.

Kiran, U., and N. K. Pandey. 2020. Transgenic food crops: public acceptance and IPR. Pages 273-307 Transgenic technology based value addition in plant biotechnology. Elsevier.

Koul, B. 2022a. Future Prospects of GM Plants. Pages 387-424 Cisgenics and Transgenics: Strategies for Sustainable Crop Development and Food Security. Springer.

Koul, B. 2022b. Transgenics and Crop Improvement. Pages 131-347 Cisgenics and Transgenics: Strategies for Sustainable Crop Development and Food Security. Springer.

Kumar, B., and Omkar. 2018. Insect pest management. Springer.

Kumar, K., G. Gambhir, A. Dass, A. K. Tripathi, A. Singh, A. K. Jha, P. Yadava, M. Choudhary, and S. Rakshit. 2020. Genetically modified crops: current status and future prospects. Planta 251:1-27.

Li, Y., E. M. Hallerman, K. Wu, and Y. Peng. 2020. Insect-resistant genetically engineered crops in China: development, application, and prospects for use. Annual review of entomology 65:273-292.

Makeshkumar, T., K. Divya, and S. Asha. 2021. Transgenic technology for disease resistance in crop plants. Emerging Trends in Plant Pathology:499-560.

Manan, A., S. Roytrakul, S. Charoenlappanit, T. Poolpak, P. Ounjai, M. Kruatrachue, K. M. Yang, and P. Pokethitiyook. 2023. Glyphosate metabolism in Tetrahymena thermophila: A shotgun proteomic analysis approach. Environmental Toxicology 38:867-882.

Manimekalai, R., G. Suresh, and B. Singaravelu. 2022. Sugarcane Transcriptomics in Response to Abiotic and Biotic Stresses: A Review. Sugar Tech 24:1295-1318.

Muhammad Asad, U., and M. A. B. Zia. 2023. Morphological characterization of diverse wheat genotypes for yield and related traits under drought condition. International Journal of Natural and Engineering Sciences 17:87-94.

Pelosi, C., C. Bertrand, V. Bretagnolle, M. Coeurdassier, O. Delhomme, M. Deschamps, S. Gaba, M. Millet, S. Nélieu, and C. Fritsch. 2022. Glyphosate, AMPA and glufosinate in soils and earthworms in a French arable landscape. Chemosphere 301:134672.

Perkins, J. H. 2012. Insects, experts, and the insecticide crisis: the quest for new pest management strategies. Springer Science & Business Media.

Pradhan, K., S. Rout, B. Tripathy, U. N. Mishra, G. Sahoo, A. K. Prusty, and L. Dash. 2021. Role of Biotechnology in Vegetable Breeding. Turkish Online Journal of Qualitative Inquiry 12.

Saeed, F., M. H. Hashmi, M. J. Hossain, M. A. Ali, and A. Bakhsh. 2020. Transgenic technologies for efficient insect pest management in crop plants. Pages 123-156 Transgenic technology based value addition in plant biotechnology. Elsevier.

Scavo, A., and G. Mauromicale. 2020. Integrated weed management in herbaceous field crops. Agronomy 10:466.

Sharma, K., K. Kour, N. Bhura, J. Kour, and B. Jyoti. 2022. 17 GM crops–friends or foes? Genetically Modified Crops and Food Security: Commercial, Ethical and Health Considerations.

Somssich, M. 2022. The dawn of plant molecular biology: how three key methodologies paved the way. Current Protocols 2:e417.

Ung, S. P.-M., and C.-J. Li. 2023. From rocks to bioactive compounds: a journey through the global P (V) organophosphorus industry and its sustainability. RSC Sustainability.

Walsh, J. A. 2020. Transgenic approaches to disease resistant plants as exemplified by viruses. Pages 218-252 Molecular Plant Pathology. CRC Press.

Yoon, Y., D. H. Seo, H. Shin, H. J. Kim, C. M. Kim, and G. Jang. 2020. The role of stress-responsive transcription factors in modulating abiotic stress tolerance in plants. Agronomy 10:788.

Downloads

Published

2024-04-16

How to Cite

ULLAH, M., AHMED, M., JAVED, I., SHAFIQ, M., SHERAZI, S., & WALEED, R. (2024). GENETICALLY MODIFIED CROPS GLOBAL REGULATION: IMPLICATIONS FOR FOOD SECURITY AND ENVIRONMENTAL SUSTAINABILITY. Journal of Life and Social Sciences, 2024(1), 25. https://bbasrjlifess.com/index.php/home/article/view/25

Similar Articles

1-10 of 19

You may also start an advanced similarity search for this article.