ROLE OF PLANT BREEDING TO MAINTAINING FOOD SECURITY IN THE FACE OF GLOBAL CLIMATE CHANGE

Authors

  • MQ RAZA The Islamia University of Bahawalpur, Department of Food Science and Technology, Pakistan Author
  • N HAMEED National Institute of Food Science and Technology, University of Agriculture Faisalabad, Pakistan Author
  • S BASHARAT National Institute of Food Science and Technology, University of Agriculture Faisalabad, Pakistan Author
  • A ASGHAR Department of Food Science and Technology, Khawaja Fareed University of Engineering and Information Technology, Pakistan Author
  • A BINT-E-ZAFAR Department of Food Science and Technology, Khawaja Fareed University of Engineering and Information Technology, Pakistan Author
  • MF MUSHTAQ Department of Agronomy, University of Agriculture Faisalabad, Pakistan Author
  • NU AIN National Institute of Food Science and Technology, University of Agriculture Faisalabad, Pakistan Author
  • M TOUQEER Government College University Faisalabad, Department of Food Science and Technology, Pakistan Author
  • R FATIMA Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan Author
  • A AKHLAQ Department of Plant Pathology, University of Agriculture Faisalabad, Pakistan Author

DOI:

https://doi.org/10.64013/bbasrjlifess.v2024i1.26

Keywords:

global warming, food crisis, plant breeding, genetic variation

Abstract

As the global population expands and the number of individuals employed in agriculture rises, these elements exert an adverse influence on global production. Since crop output and population growth are not maintaining pace, it is becoming increasingly difficult to provide food for the world's expanding population, which is expanding geometrically while crop productivity is increasing arithmetically. Thus, plant breeding plays a key role in the development of high-yielding cultivars to ensure food security. Modern biotechnological techniques along with traditional plant breeding practices can speed up the laborious and lengthy process of variety development having high yields and quality.

Downloads

Download data is not yet available.

References

Araus, J.L., Slafer, G.A., Reynolds, M.P., and Royo, C. (2002) Plant breeding and drought in C3 cereals what should we breed for? Annals of Botany, 89, 925–940. DOI: https://doi.org/10.1093/aob/mcf049

Bucksch, A., Burridge, J., York, L.M. et al. (2014) Image-based high-throughput field phenotyping of crop roots. Plant Physiology, 166, 470–486. DOI: https://doi.org/10.1104/pp.114.243519

Chloupek, O. and Hrstkova, P. (2005) Adaptation of crops to environment. Theoretical and Applied Genetics, 111, 1316–1321. DOI: https://doi.org/10.1007/s00122-005-0060-x

Cominelli, E. and Tonelli, C. (2010) Transgenic crops coping with water scarcity. New Biotechnology, 27, 474–477. DOI: https://doi.org/10.1016/j.nbt.2010.08.005

Connolly-Boutin, L., & Smit, B. (2016). Climate change, food security, and livelihoods in sub-Saharan Africa. Regional Environmental Change, 16(2), 385–399. DOI: https://doi.org/10.1007/s10113-015-0761-x

Cormier, F., Faure, S., Dubreuil, P. et al. (2013) A multi-environmental study of recent breeding progress on nitrogen use efficiency in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 126, 3035–3048. DOI: https://doi.org/10.1007/s00122-013-2191-9

Crossa, J. (1989) Theoretical considerations for the introgression of exotic germplasm into adapted maize populations. Maydica, 34, 53–62.

Dotlacil, L., Hermuth , J., Stehno, Z. et al. (2010) How can wheat landraces contribute to present breeding? Czech Journal of Genetics and Plant Breeding, 46, S70–S74. DOI: https://doi.org/10.17221/1519-CJGPB

Eigenbrode, S. D., Binns, W. P., & Huggins, D. R. (2018). Confronting climate change challenges to dryland cereal production: A call for collaborative, transdisciplinary research, and producer engagement. Frontiers in Ecology and Evolution, 5, 164. DOI: https://doi.org/10.3389/fevo.2017.00164

Finlay, K.W. and Wilkinson, G.N. (1963) The analysis of adaptation in a plant breeding programme. Australian Journal of Agricultural Research, 14, 742–754. DOI: https://doi.org/10.1071/AR9630742

Fritsche-Neto, R. and DoVale, J.C. (2012) Breeding for stress tolerance or resource-use efficiency? In: Fritsche-Neto, R. and Borém, A. (eds), Plant Breeding for Abiotic Stress Tolerance. Springer-Verlag, Berlin Heidelberg, Germany, pp. 13–20. DOI: https://doi.org/10.1007/978-3-642-30553-5_2

Fukao, T. and Bailey-Serres, J. (2008). Ethylene—A key regulator of submergence responses in rice. Plant Science, 175, 43–51. DOI: https://doi.org/10.1016/j.plantsci.2007.12.002

Gourdji, S.M. Mathews, K.L., Reynolds, M. et al. (2013) An assessment of wheat yield sensitivity and breeding gains in hot environments. Proc Biol Sci. 280(1752):20122190. doi: 10.1098/rspb.2012.2190. DOI: https://doi.org/10.1098/rspb.2012.2190

Grassini, P., Eskridge, K. M., & Cassman, K. G. (2013). Distinguishing between yield advances and yield plateaus in historical crop production trends. Nature Communications, 4(1), 1–11. DOI: https://doi.org/10.1038/ncomms3918

Gruhn, P., Paarlberg, R. L., Goletti, F., & Yudelman, M. (2000). Governing the GM crop revolution: policy choices for developing countries. Intl Food Policy Res Inst.

Hill, W.G. (2010) Understanding and using quantitative genetic variation. Philosophical Transactions of the Royal Society B, 365, 73–85. DOI: https://doi.org/10.1098/rstb.2009.0203

Hu, H. and Xiong, L. (2013) Genetic engineering and breeding of drought-resistant crops. Annual Review Plant Biology, 65, 715–741. DOI: https://doi.org/10.1146/annurev-arplant-050213-040000

Ishimaru, T., Hirabayashi, H., Ida, M., Takai, T., San-Oh, Y. A., Yoshinaga, S., Ando, I., Ogawa, T., & Kondo, M. (2010). A genetic resource for early-morning flowering trait of wild rice Oryza officinalis to mitigate high temperature-induced spikelet sterility at anthesis. Annals of Botany, 106(3), 515–520. DOI: https://doi.org/10.1093/aob/mcq124

Jewell, M.C., Campbell, B.C., and Godwin, I.D. (2010) Transgenic plants for abiotic stress resistance. In: Kole, C. (ed.) Trangenic Crop Plants. Springer-Verlag, Berlin – Heidelberg, Germany, pp. 67–132. DOI: https://doi.org/10.1007/978-3-642-04812-8_2

Keane, J., Page, S., & Kennan, J. (2009). Climate change and developing country agriculture: An overview of expected impacts, adaptation and mitigation challenges, and funding requirements. ICTSD-IPC Platform on Climate Change, Agricultrue and Trade, International Envrionment House 2 7 Chemin de Balexert, 1219 Geneva, Switzerland DOI: https://doi.org/10.7215/AG_IB_20100125A

Keilwagen, J., Kilian, B., Özkan, H. et al. (2014) Separating the wheat from the chaff – a strategy to utilize plantgenetic resources from ex situ genebanks. Scientific Reports, 4, 5231. doi:10.1038/srep05231 DOI: https://doi.org/10.1038/srep05231

Keurentjes, JJB, Koorneeff, M., and Vreugdenhi, D. (2008) Quantitative genetics in the age of omics. Current Opinion in Plant Biology, 11, 123–128. DOI: https://doi.org/10.1016/j.pbi.2008.01.006

Khoury, C. K., Bjorkman, A. D., Dempewolf, H., Ramirez-Villegas, J., Guarino, L., Jarvis, A., Rieseberg, L. H., & Struik, P. C. (2014). Increasing homogeneity in global food supplies and the implications for food security. Proceedings of the National Academy of Sciences, 111(11), 4001–4006. DOI: https://doi.org/10.1073/pnas.1313490111

Nass, L.L. and Paterniani, E. (2000) Pre-breeding: a link between genetic resources and maize breeding. Scientia Agricola, 57, 581–587. DOI: https://doi.org/10.1590/S0103-90162000000300035

Nicotra, A.B., Atkin, O.K., Bonser, S.P. (2010) Plant phenotypic plasticity in a changing climate. Trends in Plant Science, 15, 684–692. DOI: https://doi.org/10.1016/j.tplants.2010.09.008

Ortiz, R. (2008) Crop genetic engineering under global climate change. Annals of Arid Zone 47:343–354.

Porch, T. G., Beaver, J. S., Debouck, D. G., Jackson, S., Kelly, J. D., & Dempewolf, H. (2013). Use of wild relatives and closely related species to adapt common bean to climate change. Agronomy, 3(2), 433–461. DOI: https://doi.org/10.3390/agronomy3020433

Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield trends are insufficient to double global crop production by 2050. PloS One, 8(6), e66428. DOI: https://doi.org/10.1371/journal.pone.0066428

Redden, R. J., Yadav, S. S., Maxted, N., Dulloo, M. E., Guarino, L., & Smith, P. (2015). Crop wild relatives and climate change. John Wiley & Sons. DOI: https://doi.org/10.1002/9781118854396

Renzaho, A. M. N., & Mellor, D. (2010). Food security measurement in cultural pluralism: Missing the point or conceptual misunderstanding? Nutrition, 26(1), 1–9. DOI: https://doi.org/10.1016/j.nut.2009.05.001

Reynolds, M.P., Dreccer, F., and Trethowan, R. (2007) Drought adaptive traits from wild relatives and landraces of wheat. Journal of Experimental Botany, 58, 177–186. DOI: https://doi.org/10.1093/jxb/erl250

Roy, S.J., Tucker, E.J., and Tester, M. (2011) Genetic analysis of abiotic stress tolerance in crops. Current Opinion in Plant Biology, 14, 232–239. DOI: https://doi.org/10.1016/j.pbi.2011.03.002

Sen, A. (1997). Resources, values and development. Harvard University Press.

Septiningsih, E. M., Pamplona, A. M., Sanchez, D. L. et al. Development of submergence tolerantrice cultivars: The Sub1 locus and beyond. Annals of Botany, 103, 151–160. DOI: https://doi.org/10.1093/aob/mcn206

Sharma, R.C., Tiwari, A.K., and Ortiz-Ferrara, G. (2008) Reduction in kernel weight as a potential indirect selection criterion for wheat grain yield under terminal heat stress. Plant Breeding, 127, 241–248. DOI: https://doi.org/10.1111/j.1439-0523.2007.01460.x

Smith, G.A. (1993) The theory of plant breeding. Journal of Sugar Beet Breeding, 30, 189–195. DOI: https://doi.org/10.5274/jsbr.30.4.189

Stinchcombe, J.R. and Hoekstra, H.E. (2008) Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits. Heredity, 100, 158–170. DOI: https://doi.org/10.1038/sj.hdy.6800937

Sylvester-Bradley, R. and Kindred, D.R. (2009) Analysing nitrogen responses of cereals to prioritize routes to the improvement of nitrogen use efficiency. Journal of Experimental Botany, 60, 1939–1951. DOI: https://doi.org/10.1093/jxb/erp116

Thompson, J., & Scoones, I. (2009). Addressing the dynamics of agri-food systems: an emerging agenda for social science research. Environmental Science & Policy, 12(4), 386–397. DOI: https://doi.org/10.1016/j.envsci.2009.03.001

Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, 108(50), 20260–20264. DOI: https://doi.org/10.1073/pnas.1116437108

Turral, H., Burke, J. J., & Faurès, J. M. (2011). Climate change, water and food security: Food and Agriculture Organization of the United Nations Rome. Link: Https://Bit. Ly/3wHV3zd.

Varshney, R. K., Singh, V. K., Kumar, A., Powell, W., & Sorrells, M. E. (2018). Can genomics deliver climate-change ready crops? Current Opinion in Plant Biology, 45, 205–211. DOI: https://doi.org/10.1016/j.pbi.2018.03.007

Varshney, R.K., Bansal, K.C., Aggarwal, P. K. et al. (2011) Agricultural biotechnology for crop improvement in a variable climate: hope or hype? Trends in Plant Science, 16, 363–371. DOI: https://doi.org/10.1016/j.tplants.2011.03.004

Wang, J., Vanga, S. K., Saxena, R., Orsat, V., & Raghavan, V. (2018). Effect of climate change on the yield of cereal crops: a review. Climate, 6(2), 41. DOI: https://doi.org/10.3390/cli6020041

Yimer, M. (2015). The effect of sustainable land management (SLM) to ensure food security; local evidences from Tehuledere Woreda, ANRS, Northern Ethiopia. Scientific journal of Crop Science, 4, 1–27.

Downloads

Published

22-04-2024

How to Cite

RAZA, M., HAMEED, N., BASHARAT, S., ASGHAR, A., BINT-E-ZAFAR, A., MUSHTAQ, M., AIN, N., TOUQEER, M., FATIMA, R., & AKHLAQ, A. (2024). ROLE OF PLANT BREEDING TO MAINTAINING FOOD SECURITY IN THE FACE OF GLOBAL CLIMATE CHANGE. Journal of Life and Social Sciences, 2024(1), 26. https://doi.org/10.64013/bbasrjlifess.v2024i1.26