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Abstract Genetic engineering and plant transformation play crucial roles in enhancing crops by introducing beneficial 

foreign genes or suppressing native gene expression. Genetically modified crops offer advantages such as herbicide 

tolerance, insect resistance, tolerance to abiotic stress, disease resistance, and improved nutrition. Transgenic 

technology integration has shown significant advantages, such as increased crop yields, less dependence on pesticides 

and insecticides, decreased CO2 emissions, and decreased crop production costs. In contrast to transgenic crops, 

some other techniques can help produce crops without foreign genes, which may gain more consumer acceptance and 

quicker regulatory approvals. This review provides an extensive overview of various accomplishments in genetic 

modifications and their present status. 
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Introduction  

Agriculture plays a critical role in meeting the needs 

of the global population in the twenty-first century, 

including clothing, energy, and sustenance. Even with 

fewer farmers and less arable land available, modern 

difficulties are addressed by ongoing research and 

development that expands on previously acquired 

knowledge. The use of biotechnology in agricultural 

innovation is crucial to this advancement, as it greatly 

boosts productivity and accessibility (De Souza and 

Bonciu, 2022). Adopting new technologies does, 

however, need extensive awareness of and control 

over the hazards involved. Legislative organizations 

have taken on the task of evaluating and reducing 

possible risks associated with agricultural practices 

during the last three to four decades (Caradus, 2023). 

These standards are generally applied to all 

agricultural products meant for cultivation and 

consumption; this includes both biotechnology-

developed goods and those originating from 

conventional plant breeding techniques. 

Crop plants that have had their genetic makeup 

changed through genetic manipulation are commonly 

referred to as genetically modified (GM) crops. These 

changes are intended to improve upon current 

characteristics or add new attributes that aren't found 

in the target crop species naturally. Transgenic plants 

are those that have had particular foreign nucleotide 

or gene sequences included in their genome using 

techniques such as direct gene transfer or 

Agrobacterium-mediated transformation. A 

transgenic is an introduced gene that can come from 

animals, fungi, bacteria, viruses, or other plant 

species. The traditional constraints of traditional plant 

breeding, which need sexual compatibility across 

species as a requirement for crossbreeding, have been 

bypassed by genetic transformation. Back in 1977, 

scientists made a discovery. They found out that 

Agrobacterium tumefaciens can naturally put Ti 

plasmid DNA (T-DNA) into the genes of plants. 

These lines unveil a plethora of new opportunities for 

utilizing the Ti plasmid as a means to introduce 

foreign genes into plant cells. And that's how they 

started creating transgenic plants (Somssich, 2022). 

Later, recombinant DNA and transformation methods 

were reported to be effective in transferring specific 

gene sequences to plant cells. In the same year, the 

first transgenic plants were created, such as petunia 

and tobacco that are resistant to antibiotics (Sharma 
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et al., 2022). An experiment was conducted where the 

successful expression of the 'phaseolin' gene from 

beans was demonstrated in sunflowers. This 

groundbreaking study showcased the ability to 

express a plant gene in a taxonomically distinct 

angiosperm family (Kumar et al., 2020). In 1994, the 

Food and Drug Administration (FDA) approved the 

transgenic tomato 'Flavr Savr,' created by Calgene 

(Monsanto), for sale in the United States due to its 

prolonged shelf life or delayed ripening (Pradhan et 

al., 2021). After that breakthrough, several transgenic 

crops received approval for commercialization. These 

included Bt cotton, glyphosate-resistant soybeans, Bt 

potato, Bt maize, and cotton resistant to bromoxynil 

herbicide. Microbial genes and/or genetic 

components are the main features of commercialized 

transgenic crops. 32 crops and 525 transgenic events 

have been commercialized thus far. The most 

incidents (238) are found in maize, followed by 

cotton (61), potatoes (49), soybeans (41), carnation 

(19), Argentine canola (42), and other crops. 

Transgenic technology is still the preferred approach 

for quickly developing improved crop plants and 

incorporating many advantageous features, despite 

environmental and biosafety issues (Ahmar et al., 

2021). Over the past 22 years, there has been 

substantial growth in transgenic crop farming, 

expanding from 1.7 million hectares in 1996 to 191.7 

million hectares in 2018, marking a remarkable 

increase of 113 times. Specifically, modified 

soybeans accounted for fifty percent of the hectares 

covered by transgenic crops (95.9 million), transgenic 

maize for thirty percent, transgenic cotton for thirteen 

percent, transgenic canola for ten million hectares 

(5.3%), and other transgenic crops for one million 

hectares (<1%) (Kumar et al., 2020). Transgenic 

technology has emerged as a rapidly adopted crop 

technology in advanced agriculture practice. Around 

17 million farmers across 26 countries cultivated 

crops during the 2017-18 period, contributing to a 

global market value estimated at US$18.2 billion. 

Transgenic crop development and commercialization 

have primarily targeted traits like herbicide tolerance 

(HT), insect resistance (IR), disease resistance, 

abiotic stress tolerance, and nutritional enhancement 

(Koul 2022a), with other traits accounting for less 

than 1% of the total cultivated area for transgenic 

crops. This review's main goal is to present a 

thorough overview of the state of commercially 

grown transgenic crops with a variety of features. 

We'll ensure that we address any public concerns and 

potential biosafety risks related to the use of 

transgenic food crops in our review. The paper will 

also present new developments in plant genetic 

engineering technologies. The topic of prospects for 

genetically modified crops created by using genome 

editing techniques will also be discussed. 

 

Disease resistance via genetic modifications 

Pathogens, which comprise viruses, bacteria, spores, 

and nematodes, are largely responsible for large 

losses in agricultural output. Agrochemicals are used 

in the traditional control of plant diseases; however, 

due to the related environmental risks and the 

possibility of chemical-resistant pests emerging, 

alternative approaches must be investigated 

(Garrigou et al., 2020). Identifying and transferring 

resistance genes through breeding or biotechnological 

techniques is necessary to build innate disease 

resistance in crops to address these difficulties. 29 

transgenic events have been commercialized 

worldwide with the primary focus being on viruses 

(25 events), to grant resistance to various diseases. 

Interestingly, potatoes have had the most number of 

occurrences reported (19), with papaya (four), squash 

(2), and plum, bean, tomato, and sweet pepper seeing 

just one event each (Makeshkumar et al., 2021). Most 

virus-resistant transgenic crops are developed by 

specifically aiming at viral genes using gene silencing 

techniques such as co-suppression/RNAi and 

antisense RNA. Utilizing the gene encoding the viral 

coat protein to induce resistance via a "pathogen-

derived resistance" mechanism is also a successful 

strategy for combating viruses in transgenic crops 

(Walsh, 2020). Additionally, resistance is triggered 

by a gene-silencing mechanism when inadequate 

viral replicase as well as helicase domains are 

introduced. Using antisense RNA to efficiently 

degrade mRNA encoding essential viral proteins is 

one tactic, while another entails producing antisense 

and sense RNA strands of viral replication proteins. 

Promising remedies to plant diseases are provided by 

the continuous development of transgenic technology 

(Akbar et al., 2022). To create resilient crops and 

ensure sustainable agriculture practices, it is 

imperative to comprehend the genetic basis of 

resistance and utilize biotechnological technologies. 

Abiotic stress tolerance via genetic modifications 

There are a lot of abiotic stressors, like heat, cold, 

flooding, drought, and high salt levels, that can mess 

with the growth and development of agricultural 

plants. Unfortunately, these stressors often lead to a 

decrease in grain yield. The impact of these pressures 

is thought to be increasing due to the constantly 

shifting climate. Plants undergo metabolic changes in 

response to abiotic stressors, which trigger several 

signalling pathways and regulatory proteins such as 

heat shock factors and transcription factors (Yoon et 

al., 2020). To preserve cellular homeostasis, they also 

alter the antioxidant defense system and produce 

suitable solutes for osmotic adjustment. 

Plants adaptive responses are essential for reducing 

the negative consequences of abiotic stressors by 

preserving circumstances that are almost ideal for 

growth and development. Abiotic stresses harm 

plants (Muhammad Asad and Zia, 2023), and cause 

changes in the expression of many different genes at 

the molecular level. As a result, the complex 

interactions of several gene networks are necessary 
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for responding to abiotic stress. In contrast to 

characteristics like herbicide, insect, and disease 

resistance, the number of events granting abiotic 

stress tolerance that are commercialized is relatively 

lower, despite the trait's complexity. Only a few 

events that confer abiotic stress resistance have been 

commercialized thus far; three of these events are 

found in sugarcane, seven in maize, and two in 

soybean (Manimekalai et al., 2022). This reflects the 

challenges in developing and commercializing crops 

with enhanced tolerance to abiotic stresses due to the 

multifaceted nature of the trait. Ongoing research in 

this field is essential to unravel the intricacies of plant 

responses to abiotic stresses and to develop crops that 

can withstand the challenges posed by environmental 

fluctuations. 

Herbicide tolerance via genetic modifications 

Since weeds compete with agricultural plants for vital 

resources like sunlight, water, nutrients, and space, 

weeds represent a danger to crop productivity. 

Herbicide application is one of the most important 

active management techniques for reducing the 

amount of agricultural yield reduction caused by 

weeds (Scavo and Mauromicale, 2020). However 

getting rid of weeds selectively without harming the 

crop plant can be difficult, especially since most 

weeds are herbaceous plants. The discovery of 

herbicide tolerance characteristics in major crops, 

which would allow for the flexible application of 

strong, non-selective, broad-spectrum herbicides, is, 

therefore, one possible option. There are two main 

types of herbicides used to manage weeds: selective 

and non-selective. Both glufosinate and glyphosate 

are common non-selective herbicides (Pelosi et al., 

2022). Several herbicide-tolerant (HT) transgenic 

plants have been genetically altered to endure 

glyphosate and glufosinate. Glyphosate functions by 

inhibiting the enzyme known as 5-enolpyruvyl 

shikimate-3-phosphate synthase (EPSPS), pivotal in 

the shikimate pathway, which synthesizes aromatic 

amino acids. Notably, as the shikimate pathway is 

absent in the animal realm, glyphosate is generally 

regarded as safe for humans, birds, insects, and other 

animals (Ung and Li, 2023). 

Glyphosate-resistant transgenic crops are developed 

using various sources, including a glyphosate-

insensitive version of EPSPS obtained from 

organisms like Agrobacterium tumefaciens strain 

CP4, a mutated form of maize EPSPS, or a chemically 

synthesized gene resembling the EPSPS gene (grg23) 

found in Arthrobacter globiformis. In 1996, the 

cp4epsps gene-carrying "Roundup Ready" soybean 

became commercially available as the first herbicide-

tolerant transgenic crop. This gene has since been 

added to numerous glyphosate-resistant crops that are 

sold commercially (Green and Siehl, 2021). 

Furthermore, a small number of transgenic crops 

express enzymes that break down glyphosate, such as 

Bacillus licheniformis's GAT and Ochrobactrum 

anthropi's GOX. Glyphosate is detoxified by both 

enzymes, which also turn it into non-toxic 

metabolites (Manan et al., 2023). The emergence of 

herbicide-tolerant transgenic crops, particularly those 

resistant to glyphosate, has revolutionized weed 

management in agriculture, allowing for effective 

weed control without significant harm to the main 

crop or adverse effects on the environment. 

Insect-resistant crops via genetic modification 

Significant crop losses are caused by insect pests and 

diseases; over 67,000 bug species are known to have 

a detrimental effect on commercially significant 

crops (Kumar and Omkar, 2018). By either sucking 

sap or biting on different plant parts like leaves, 

stems, and roots, these pests harm plants. Insects can 

also act as carriers of many plant diseases, bringing 

them to plants while they feed. For insect pest 

management, farmers have historically turned to 

costly chemically synthesized insecticides, which is 

an expensive and environmentally unfriendly 

approach (Perkins, 2012). 

To tackle the downsides linked to insecticide 

application, newer approaches like genetically 

modifying crops to enhance their insect resistance 

have become increasingly popular. At present, ten 

commercially cultivated transgenic crops exhibit 

insect resistance. Most of these crops are genetically 

altered to include insecticidal genes; these genes are 

often variations of the cry gene and, occasionally, the 

vip gene (Saeed et al., 2020). These genes are 

essential for preventing damaging insect attacks on 

crops. In 2017, transgenic crops resistant to insects 

became the second largest category in terms of 

farmed area, covering 23.3 million hectares. 

Globally, 304 events have been sanctioned for 

cultivation, with maize being involved in 208 of them 

(Koul, 2022). These occurrences entail a variety of 

insect-resistant genes that have been tailored to the 

predominance of particular insect pests in the areas 

where farming takes place. This method helps to 

effectively manage insect pests in agriculture by 

offering a more environmentally friendly and 

sustainable substitute for traditional insecticide use. 

Cry genes from Bacillus thuringiensis (Bt) soil 

bacteria have been extensively used in the creation of 

transgenic crops that are resistant to insects (Li et al., 

2020)(Kamatham et al., 2021).  

The data from tables 1-4 showed different crop plants 

and their transgencs which has been developed till 

now. 

Table 1. Major Transgenic Cereals

Crop Trait Gene Involved References 

Rice 

 

Folic acid(vitamin B9) Arabidopsis GTP-

cyclohydrolase I 

(Storozhenko et al., 

2007) 
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Golden rice (vitamin A) PSY, crtI (Ye et al., 2000) 

Disease resistance (blast) Xa21 Ye et al., (2000) 

Dehydration Tolerance HVA1, a LEA gene 

 

(Babu et al., 2004) 

Enhanced tolerance to low 

iron availability 

Iron transporter OsIRT (Takahashi et al., 2001) 

Iron nicotianamine synthase and 

ferritin 

(Wirth et al., 2009) 

Tolerance to several 

herbicides 

CYP2B22 CYP2C49, 

P450CYP 

(Jung et al., 2008) 

Zinc Activation tagging of Osnas2 (Lee et al., 2011) 

Maize 

 

Herbicide resistance PAT Lee et al., (2011) 

Bt toxin (insect resistance) cry1Ab Lee et al., (2011) 

Drought tolerance DREB1A Wirth et al., (2009) 

Reduction in seed phytate 

and increase in Pi contents 

fungal phyA2 gene (Chen et al., 2008) 

Vit-E HGGT (Cahoon et al., 2003) 

Vit-C  (DHAR) (Chen et al., 2003) 

Wheat Provitamin A PSY and carotene desaturase (Wang et al., 2014) 

Heat Stress Tolerance  (sHSP26) (Chauhan et al., 2012) 

Tocochromanol pathway HGGT and HPT (Dolde and Wang, 2011) 

Increased yield GA20ox1 Chen et al., (2003) 

Iron ferritin gene (Xiaoyan et al., 2012) 

Barley 

 

Frost tolerant TaCBF14 and TaCBF15  (Soltész et al., 2013) 

Cold tolerant TaDREB3 (Chen et al. 2003) 

Drought tolerant Cytokinin dehydrogenase 

gene 

(Pospíšilová et al., 

2016) 

enhanced P, nutrition & 

grain production 

TaALMT1 (Wang et al. 2014) 

Sorghum 
 

Herbicide resistance PAT Cahoon et al., (2003) 

lysine high lysine protein (Zhao et al., 2003) 

Sweet sorghum (increased 

sugar) 

SUS Zhao et al., (2003) 

Millet 

 

leaf blast  resistance bar and pin (Ignacimuthu and 

Ceasar, 2012) 

Tolerant to low N stress SiMYB3 (Wang et al. 2014) 

Salt Tolerant SbVPPase (Anjaneyulu et al., 

2014) 

Oats 

 

Salt Tolerant CBF3 (Oraby and Ahmad, 

2012) 

Increased beta-glucan OatBGlu1 (Chen et al. 2003) 

Rye 

 

Herbicide resistance Bar Dolde and Wang, 2011 

Disease resistance (ergot) PER1 Dolde and Wang, 2011 

Triticale 

 

Herbicide resistance Bar Dolde and Wang, 2011 

Salinity tolerance HAL1 Dolde and Wang, 2011 

Table 2. Major Transgenic Oilseeds

Crop Trait Gene Involved References 

Soybean Increased Oleic Acid DGAT2 (diacylglycerol 

acyltransferase 2) 

 (Clemente and Cahoon, 

2009). 

Resistant to Helicoverpa 

zea 

CrylAc and cry1ab (Stewart et al., 2001) 

Enhanced oleate and 

protein content 

β‐carotene (Schmidt et al., 2015) 

Delated flowring GmFT2a  

 

(Cai et al., 2018) 

Insect resistant Cry1Ac Wang et al. 2019 

https://www.sciencedirect.com/science/article/pii/S0168945203004837?casa_token=lkpcHjRkYTcAAAAA:95BmlmfgdeWGqa1plsr78FIosE2lqluM1YDKIBVuWLJwev6kL6IDC4t-VJlDSwUmcidKBDGGWQM
https://www.nature.com/articles/nbt0501_466
https://www.nature.com/articles/nbt0501_466
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-7652.2009.00430.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-7652.2009.00430.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.2012.02525.x
https://academic.oup.com/jxb/article-abstract/64/7/1849/580704
https://onlinelibrary.wiley.com/doi/abs/10.1111/pbi.12286
https://onlinelibrary.wiley.com/doi/abs/10.1111/pbi.12758
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Canola Increased oil content DGAT1 (Wang et al., 2019) 

Insects resistant Cry1Ac (Stewart Jr et al., 1996) 

Salt tolerant 1-aminocyclopropane-1-

carboxylate (ACC) deaminase 

gene 

(Wang et al. 2019) 

enhanced seed protein 

methionine 

Brazil nut albumin (Altenbach et al., 1992) 

Metal tolerant ACC (Stearns et al., 2005) 

Salt Tolerant YHem1 (Sun et al., 2015) 

Cottonseed Fungal resistant D4E1 gene (Rajasekaran et al., 2005) 

Increased oleic acid 

content 

fad2 gene (Chapman et al., 2001) 

Salt tolerant AtNHX1 and TsVP (Cheng et al., 2018) 

reduction of toxic 

gossypol 

δ-cadinene synthase gene (Sunilkumar et al., 2006) 

Sunflower Enhanced feduncity Cry1Ac (Snow et al., 2003) 

phosphinothricin-resistant 

 

bar (Neskorodov et al., 2010) 

Enhanced salinity and 

development 

TaNHX2 (Mushke et al., 2019) 

Peanut Gives Higher yield under 

drought stress 

BREB1A (Bhatnagar-Mathur et al., 

2014) 

Lesser corn stalk borer cryIA (c) 

 

(Singsit et al., 1997) 

Resistant to leaf spot Rice chitinase gene (Iqbal et al., 2012) 

Soil moist. Deficiency 

tolerant 

AtBREB1A (Sarkar et al., 2016) 

Flaxseed High Stearic Acid Content SCD (stearoyl-CoA 

desaturase) 

(Iqbal et al. 2012) 

Anti inflammatory role NAP-SsGT1 (Matusiewicz et al., 2014) 

Safflower Increased Acc. of 

Quinochalcone 

in Safflower 

CtCHS1 (Petal et al. 2015) 

Alternaria leaf spot Chitenase gene (Kumar et al., 2009) 

Increased Oleic Acid DGAT2 (diacylglycerol 

acyltransferase 2) 

 

Castor bean Improved Ricinoleic Acid 

Content 

DGAT1 (diacylglycerol 

acyltransferase 1) 

(Petal et al. 2015) 

Insect resistant Cry1Aa (Muddanuru et al., 2019) 

salt tolerant SbNHX1 (Patel et al., 2015) 

Sesame Tolerenat to many biotic 

and abiotic stresses 

SindOLP (Chowdhury et al., 2017) 

Reduced oxidative stress SKN-1 (Ma et al., 2017) 

Enhanced methionine and 

cysteine 

2S albumin (Lee et al., 2003) 

Improved Oil Stability FAD2 (fatty acid desaturase 2) (Lee et a., 2003) 

Table 3. Major Transgenic Legumes

Name Trait Gene Involved References 

Chickpea 

 

Drought tolerance RD29A (Arabidopsis), 

DREB1, HVA1 (Barley) 

(Das et al., 2021) 

Salinity tolerance NHX1 (Barley), SOS1 

(Arabidopsis) 

(Das et al., 2021) 

resistance to Helicoverpa 

armigera(Pod borer) 

Cry 1Ac (Kar et al., 1997) 

Pigeonpea 

 

Insect resistance Cry1Ac (Bt), Cry2Aa (Bt), 

GNA lectin (Snowdrop) 

(Kar et al., 1997) 

https://link.springer.com/article/10.1007/s11274-005-9032-1
https://link.springer.com/article/10.1007/s11274-005-9032-1
https://link.springer.com/article/10.1007/s11274-005-9032-1
https://link.springer.com/article/10.1007/BF00034952
https://link.springer.com/article/10.1007/BF00034952
https://link.springer.com/article/10.1007/s11032-018-0774-5
https://link.springer.com/article/10.1007/s11240-009-9620-0
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1023/A:1018481805928&casa_token=ylUQTZ2l_aYAAAAA:SQ8WUyM8vX6U2vgH-ZKrqmBFdfSG6Jj99tAldGXORIaRqWm6cFHTjFaclhWwNyHiQvXRJqZrt0FpwqySSg
https://www.frontiersin.org/articles/10.3389/fpls.2017.01409/full
https://www.frontiersin.org/articles/10.3389/fpls.2017.01409/full
https://www.frontiersin.org/articles/10.3389/fpls.2017.01409/full
https://www.frontiersin.org/articles/10.3389/fpls.2017.01409/full
http://www.globalsciencebooks.info/Online/GSBOnline/images/0906/TPJ_3(SI1)/TPJ_3(SI1)113-118o.pdf
https://www.jstage.jst.go.jp/article/bbb/67/8/67_8_1699/_article/-char/ja/
https://www.jstage.jst.go.jp/article/bbb/67/8/67_8_1699/_article/-char/ja/
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Wilt resistance Fusarium resistance genes 

(Fokkerinia oxysporum) 

(Foti and Pavli, 2020) 

resistance to the Helicoverpa 

armigera 

 (Tfgd2) and  (RsAFP2) (Nalluri and Karri, 

2023) 

Lentil Drought & salinity tolerant DREB1A gene (Khatib et al., 2011) 

Embryo apex MBF1c (Kamçı, 2011) 

hairy roots induction rhizogenes (Foti and Pavli, 2020) 

Cowpea 

 

 Herbicide resistant acetohydroxyacid synthase 

coding gene (Atahas) 

(Citadin et al., 2013) 

Maruca vitrata legume pod borer Cry2Aa (Kumar et al., 2021) 

Herbicide tolerance PAT (Glufosinate) (Kumar et al.2021). 

Cowpea severe mosaic 

virus (CPSMV) and Cowpea aphid-

borne mosaic virus (CABMV) 

 bla gene (Cruz and Aragão, 

2014) 

resistance to storage pests, bruchid 

beetles 

α-amylase inhibitor 1 

 

(Solleti et al., 2008) 

Mungbean 

 

Salt tolerant (NHX1) gene 

VrNHX1 

(Sahoo et al., 2016) 

(Mishra et al., 2014) 

Cold tolerant ICE1 gene  (Rout et al., 2020) 

Salinity, OS & herbicide tolerant NHX1 and bar (Kumar et al., 2017) 

Pathogen-resistant BjNPR1  (Vijayan and Kirti, 

2012) 

Drought-tolerant VrDREB2A (Chen et al., 2016) 

Common bean 

 

Whitefly resistant Bt-vATPase (Ferreira et al., 2022) 

Golden mosaic virus resistant rep gene (Faria et al., 2006) 

Pea Resistance to Helicoverpa armigera Proteinase inhibitors (Anderson et al., 1999) 

Res. to Bruchus pisorum Bean amylase inhibitor (Schroeder et al., 1995) 

Table 4. Transgenic Vegetables and Fruits

Crop Trait Gene Involved References 

Tomato Delayed ripening rin or nor Fraser et al., 2007 

drought resistance C-5, sterol desaturase 

(FvC5SD)  

(Kamthan et al., 2012) 

lycopene, betacarotene, and 

lutein 

PSY gene (crtB) (Fraser et al., 2007) 

carotenoid and flavonoid photomorphogenesis regulatory 

gene DET1 

(Davuluri et al., 2005) 

delayed fruit ripening  ClERF069 (Zhou et al., 2020) 

Melon Virus resistance Ribozyme Genes (Huttner et al., 2001) 

Resistant to fungal pathogens antifungal protein and chitinase  (Bezirganoglu et al., 

2013) 

Orange Citrus tristeza virus (CTV) 

resistance 

Replicase gene from CTV Zhou et al., 2020 

tolerance to Phytophthora 

citrophthora 

pathogenesis related protein 

PR-5 

(Fagoaga et al., 2001) 

Xanthomonas citri attacin A (Cardoso et al., 2010) 

resistance to citrus canker sarcotoxin IA gene (Kobayashi et al., 2017) 

Grape Fungal disease resistance Stilbene synthase gene Kobayashi et al., 2017 

Fungal disease resistance thaumatin-like protein 

 

(Dhekney et al., 2011) 

Cold stress resistant DREB)1b  (Jin et al., 2009) 

Cold tolerant VaSAP15 (Shu et al., 2021) 

Enhanced fecundity DefH9-iaaM (Costantini et al., 2007) 

Watermelon Virus resistance Coat protein gene from 

watermelon mosaic virus 

Shu et al., 2021 

https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s11032-016-0564-x&casa_token=GVGjSDZInRQAAAAA:0ey23cXuEB_T01rRAJgkGnNccSjTT6ou8aO2kADlKJ532LL7NfI5Q3U5QN1_7T6LONgS7z3kYmfBpamV6A
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s11240-020-01944-w&casa_token=0URxjCpcu-YAAAAA:tODO-zSpLxGlnyiMz8Y_wbD-t9FBSLXv5P--wKTc200i55ZHD993np-HAYd7Kkv7-I9_HTAaZgCgB6zpnQ
https://www.sciencedirect.com/science/article/pii/S2468014120300558
https://www.sciencedirect.com/science/article/pii/S2468014120300558
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1023/A:1011358005054&casa_token=ETzJi4qkxj0AAAAA:BLhnfB2Si9-G4TFFrRguz3y9i1r_FUumQ6p2rwmH8C6gq6naEApM3vqprKHnsKdHTGGUqGVm6cdw7m7vxA
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1023/A:1011358005054&casa_token=ETzJi4qkxj0AAAAA:BLhnfB2Si9-G4TFFrRguz3y9i1r_FUumQ6p2rwmH8C6gq6naEApM3vqprKHnsKdHTGGUqGVm6cdw7m7vxA
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1023/A:1011358005054&casa_token=ETzJi4qkxj0AAAAA:BLhnfB2Si9-G4TFFrRguz3y9i1r_FUumQ6p2rwmH8C6gq6naEApM3vqprKHnsKdHTGGUqGVm6cdw7m7vxA
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1023/A:1011358005054&casa_token=ETzJi4qkxj0AAAAA:BLhnfB2Si9-G4TFFrRguz3y9i1r_FUumQ6p2rwmH8C6gq6naEApM3vqprKHnsKdHTGGUqGVm6cdw7m7vxA
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s11105-009-0141-0&casa_token=c0Lh2ydQSMAAAAAA:BpL8-wWOSPdTNrz8GPWDBDCyAiq2MoQSaD-JCTkxXp1uU1IqDrE4CF6FxvH1fcVaZstvzpTMSAj42s8qOw
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s10658-017-1234-5&casa_token=bCQ2vssS8WIAAAAA:aNSK7n4ttYZleK_JDHTh4Lgqpc2v383VekfjRWv_zKxlRmxZmGX4R0SduKZVMVzRUiOEJgAwUBXxtHt6bQ
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s10658-017-1234-5&casa_token=bCQ2vssS8WIAAAAA:aNSK7n4ttYZleK_JDHTh4Lgqpc2v383VekfjRWv_zKxlRmxZmGX4R0SduKZVMVzRUiOEJgAwUBXxtHt6bQ
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s11627-011-9358-3&casa_token=jLc-MPkaRrkAAAAA:myTXhBE-3VyQtN-PAPLF-JWSErjxBj5meq7QqQNMKJCemuyHaQ-b0FLnmOaQKH-6_1LZt7OFlAVFsfirIw
https://academic.oup.com/plphys/article-abstract/143/4/1689/6106828
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Salt tolerant HAL1 gene (Ellul et al., 2003) 

 Resistant to (ZYMV) 

and Papaya ringspot virus type 

W (PRSV W)  

ZYMV coat protein (CP) and 

PRSV W CP genes 

(Yu et al., 2011) 

Cassava Drought tolerance DREB1 transcription factor 

gene 

(Yu et al. 2011) 

African cassava mosaic virus 

(ACMV) 

AC1 antisense RNA (Yadav et al., 2011) 

Eggplant Insect resistance Cry1Ac gene from Bt Ellul et al., 2003 

Abiotic stress tolerance mannitol-1-

phosphodehydrogenase(mtlD) 

(Prabhavathi et al., 

2002) 

resistant to Colorado Potato 

Beetle 

 CryIIIB toxin (Arpaia et al., 1997) 

resistance to fungal wilts  glucanase gene (Singh et al., 2014) 

Lettuce Virus resistance Coat protein gene from lettuce 

mosaic virus 

Singh et al., 2014 

Calcium scax1 (Park et al., 2004) 

Enhanced Development and 

Senescence 

PSAG12-IPT  (McCabe et al., 2001) 

tolerance to salt- and Drought LEA (Park et al., 2005) 

Cold tolerant ABF3 gene (Vanjildorj et al., 2005) 

Mango Fungal disease resistance Chitinase and glucanase genes Yadav et al., 2010 

Pineapple Pink flesh coloration Lycopene biosynthesis genes Park et al., 2004 

control flowering and ripening ACC synthase, ACC oxidase (Botella et al., 1998) 

herbicide tolerance bar gene  (Sripaoraya et al., 2006) 

Carrot Calcium scax1 (Park et al., 2004) 

higher interferon activity in 

young leaves 

human interferon alpha-2b (Luchakivskaya et al., 

2011) 

Papaya   Papaya ringspot virus (PRSV) Coat protein gene from papaya 

ringspot virus 

(Ferreira et al., 2002) 

Squash 

(Zucchini) 

Zucchini yellow mosaic virus 

(ZYMV) 

Coat protein gene from 

zucchini yellow mosaic virus 

(Fuchs et al., 1998) 

Sweet corn (Bt 

corn) 

Corn Earworm and Fall 

Armyworm resistant 

Bacillus thuringiensis (Bt) 

cry1Ab gene 

(Lynch et al., 1999) 

Potato  Late blight resistance R gene from Solanum 

demissum 

Xu et al., 2019 

Enhanced beta-carotene and 

total carotenoids 

  LCY-e (Diretto et al., 2006) 

increased triacylglycerol along 

with other lipids  

AGPase & SDP1 (Xu et al., 2019) 

Over-accumulation of vitamin 

C. 

GalUR and GLOase (Upadhyaya et al., 2009) 

reduction in starch and 

amylose content 

psPPase  and NTT (Anderson et al., 1999) 

Increased Nutritive values  Non-allergenic seed albumin 

gene 

(Chakraborty et al., 

2000) 

Apple  Non-browning kanamycin resistant  antisense 

PPO gene 

Bolar et al., 2000 

(Murata et al., 2001) 

Apple scab resistant Endochitinase (Bolar et al., 2000) 

Drought and cold tolerant Osmyb4 (Pasquali et al., 2008) 

basal thermotolerance MdATG18a (Huo et al., 2020) 

Strawberry  Enhanced shelf life ACC oxidase antisense gene Dolgov et al., 2005 

Resistant to bugs and Weevils  (CpTi) gene (Qin et al., 2008) 

resistance to Botrytis cinerea 

 

thaumatin II gene 

 

(Schestibratov and 

Dolgov, 2005) 

https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s00122-003-1267-3&casa_token=AJnKGPTUR-QAAAAA:6r1Hr84Z4wh3yb1KuKs-2SO5h0_lZjf6QEW7Wk0Vg2HacQmAWza3g1_XxgK_alyYcczDhdLTbYdX-GHKyQ
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s12298-014-0225-7&casa_token=7upWhK8-eUsAAAAA:nJb_IQ1Y0R3wpbynDpQ49ykvpPSUsZWpWwgN5Ea-l8V425Wr1FFxFFjaXcRgIN8hQSXpT_I9svs_hR-egw
https://academic.oup.com/plphys/article-abstract/127/2/505/6103263
https://academic.oup.com/plphys/article-abstract/127/2/505/6103263
https://academic.oup.com/plphys/article-abstract/127/2/505/6103263
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s10725-004-7924-y&casa_token=mUrdzUcqecQAAAAA:3kY8imhntdq7JV8RAGlBkyvXTalJURSFzrqbyKBfoURKPavmsjGJVzAMIh9yVoEBroQiYhStcswRBNtEoA
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s10725-004-7924-y&casa_token=mUrdzUcqecQAAAAA:3kY8imhntdq7JV8RAGlBkyvXTalJURSFzrqbyKBfoURKPavmsjGJVzAMIh9yVoEBroQiYhStcswRBNtEoA
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s11240-005-3800-3&casa_token=3R5rWFQAaBUAAAAA:OwHPXixqLPdNEut3-swcf2u7wKswQdkGdAhFP5-cbu2jJ26xYIOVKoCXEuHynKCwrBi75LzN1pAUyOitIg
https://www.pnas.org/doi/abs/10.1073/pnas.97.7.3724
https://www.pnas.org/doi/abs/10.1073/pnas.97.7.3724
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frost tolerant 

 

wcor410 protein  (Houde et al., 2004) 

Salt Tolerant osmotin gene (Hussain and Abid, 

2011) 

Banana (Musa 

spp.) 

Tolerant to various Abiotic 

stresses 

MusaPIP1,2  (Sreedharan et al., 2013) 

Resistant to Wilt Pflp gene (Yip et al., 2011) 

specific antibody response HBsAg (Kumar et al., 2005) 

Fungal resistance Chit. and glu. genes Kumar et al., 2005 

 (Als) acetolactate synthase gene (Ganapathi et al., 2001; 

Sturtevant, 1913) 

The Future 

Genetic modification promoters see GM as a game-

changing technology that can reduce world hunger by 

improving farming methods, sustainability, food 

safety, and profitability. They contend that the 

potential benefits of GM products—better, new ones 

with desirable traits—outweigh any associated 

hazards. Concerns about the effects on the 

environment and public health still exist, 

notwithstanding the growing global popularity of this 

practice. To guarantee consumer acceptability and 

safety, new legislative and technical frameworks are 

essential. By pointing out the differences and 

similarities between genetically modified and 

traditional foods, equivalency assessments help direct 

future safety analyses. Along with post-market 

surveillance of foods resulting from genetic 

alteration, reliable techniques for identifying 

unintended effects of genetic modification are also 

crucial. Customer confidence is important because it 

affects market competitiveness and leads some food 

companies to avoid using genetically modified foods. 

To support well-informed decision-making and 

regulatory actions, review papers should go towards 

clarifying the advantages and disadvantages of 

genetically modified agriculture technology, 

improving detection techniques, and addressing 

consumer concerns. 
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