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Abstract Abscisic acid's (ABA) mode of action and its connections to adaptations to cold have captured plant 

hormone researchers' attention for over a decade. Abiotic stress is the main risk to agriculture productivity needed 

to feed the globe in the next decades. A significant phytohormone, ABA, is crucial in responding to various 

challenges, including high and low temperatures, drought, thermal or heat stress, and heavy metal and radiation 

stress. Stress situations cause plants to slow down their growth and development, ultimately impacting the output. 

There is a lot of proof that ABA moves around inside plants. In reaction to dry soil conditions, As a growth hormone 

ABA is an important biochemical that causes stomata closures. It has been claimed that ABA produced in 

morphological plant body parts is transferred to seeds. The transport of ABA is a crucial mechanism in 

physiological responses because it significantly determines an endogenous concentration of ABA action sites. ABA 

is a significant messenger that is a signaling mediator to control how plants respond adaptively to various 

environmental stressors. It is described in detail that several plant exposures elevated ABA endogenous levels under 

cold stress. In our present discussion, the role of ABA in low temperatures will be our main focus. ABA 

transportation in plants, the biosynthetic pathway of ABA in plants, the Pathway from IPP to ABA Production, the 

ABA functions in plants, and the location of biosynthesis. The review also deals with the production of ABA in plants 

under cold stress. 

[Citation: Tahir, A., Ashraf, M. (2022). Advances and challenges in wheat genetics and breeding for global food 

security. Biol. Agri. Sci. Res. J., 2022: 1] 
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Introduction  

Abiotic stressors affect plants in a variety of ways, 

including increased salinity (salinity), low 

temperatures, chilling and freezing, high 

temperatures (heat), and a lack of water (drought or 

dehydration). These stressors are the main factor 

drastically lowering crop production (Mahajan and 

Tuteja, 2005; Roelofs et al., 2008; Tuteja, 2007; 

Yadav et al., 2020). The phytohormone abscisic acid 

is a signal to control many activities throughout a 

plant's life cycle. Adaptively plants perceive and 

respond to abiotic stress imposed by cold, drought, 

salt, and wounding (Mahajan and Tuteja, 2005; 

Shariatipour and Heidari, 2018; Swamy and Smith, 

1999; Tuteja, 2007).  Abscisic acid is also a stress 

hormone (Mauch-Mani and Mauch, 2005; Yoshida 

et al., 2019; Zhang et al., 2006). Abscisic acid was 

discovered and categorized as a plant hormone for 

the first time by Frederick and his colleagues in the 

1940s. They researched substances that lead to 

cotton bolls' abscission (shedding). The chemicals 

Abscisin I and Abscisin II were isolated. Abscisic 

acid (ABA) is the current name for abscisin II (Davis 

and Addicott, 1972). Abscisic acid (ABA or abscisin 

II) is a hormone that plants make in extremely small 

amounts. It is known that transcription factors 

control the expression of ABA-sensitive genes. 

(Fujita et al., 2011; Xiong et al., 2002). ABA is weak 

acid that has 15pH (Finkelsteina and Rockb, 2002). 

In the early 1960s, ABA was discovered as a growth 

inhibitor, addition in abscising cotton fruit and 

photoperiodically induced dormant leaves of 

sycamore plant (Cutler et al., 2010; Nakabayashi et 

al., 2005; Wasilewska et al., 2008). ABA-dependent 

and ABA-independent are two ways of expressing 

stress-responsive genes (Chinnusamy et al., 2004; 

Ding et al., 2011; Tuteja, 2007; Yang et al., 2011). 

From embryogenesis onward, the hormones regulate 

the plant's development and growth (Méndez-

Hernández et al., 2019). Controlling the size of the 

organ and pathogenic organisms (Bürger and Chory, 

2019; Shigenaga and Argueso, 2016), stress 

tolerance (Feng et al., 2015; Ku et al., 2018), and 

then the reproduction development (Pierre-Jerome et 

al., 2018). Abscisic acid is important for the various 
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developmental processes in the plant, for example, 

organ size regulation, bud and seed dormancy, and 

stomatal closure (Kishor et al., 2022; Liu et al., 

2022). How the body reacts to environmental 

changes like cold tolerance, drought, and soil salinity 

is crucial (Kumar and Verma, 2018), as tolerance to 

heavy ionic metals and freezing (Capelle et al., 2010; 

Gull et al., 2019). One main environmental 

component which restricts its growth and 

dissemination is thought to be cold stress. (Chen et 

al., 2014; Fan et al., 2014; Peng et al., 2019; Shi and 

Yang, 2014). An organic hormone Abscisic acid, 

regulates different plant physiological systems (Chen 

et al., 2020; Singh and Roychoudhury, 2023). 

Increased levels of ABA are caused by several 

stressors, such as drought, cold, temperature, and 

light in the water (Gao et al., 2011; Swamy and 

Smith, 1999). Abscisic acid, which was shown to 

be a hormone in plants, shows a significant 

function in plant physiology. Pteridophya and 

Spermatophyta are two higher plants where ABA 

has been found (Hirai, 2018). Several important 

plant activities are controlled by a plant hormone 

known as ABA, such as seed germination (Sah et al., 

2016), abiotic stress tolerance, and development 

(Hubbard et al., 2010; Lee and Luan, 2012).  Overall 

plant stress response system is initially described in 

this review article, after which the function of 

abscisic acid and regulatory transcription factors are 

discussed in the stress tolerance. It also discusses 

how cold stress affects plant ABA synthesis and how 

the pathways of abscisic acid biosynthesis are 

controlled.  

ABA Transport or Transporter 

The transport of ABA is crucial for determining 

endogenous hormone concentrations at the specific 

site where the action occurs, making it an essential 

mechanism in physiological reactions (Seo and 

Koshiba, 2011). When the plant receives ABA 

therapy on its roots,  increased abscisic acid 

concentration in leaves can be promptly found after 

administration of abscisic acid (Agrawal et al., 

2001), demonstrating that plants have an effective 

transport mechanism for ABA. The porous nature of 

ABA to the cell membrane has previously led people 

to believe that ABA transport is a diffusive 

mechanism (Ye et al., 2012). But unlike Auxin, 

which is a plant hormone that is transported over 

long distances through a complex mechanism by a 

diffusive process, abscisic acid should not be 

transported purely (Daeter and Hartung, 1993; Jiang 

and Hartung, 2008; Wilkinson and Davies, 1997).  

Strong evidence suggests that ABA is transported 

inside plants. In reaction to dry soil conditions, 

abscisic acid is proposed as a root-derived signaling 

chemical that causes stomatal occlusion. 

Additionally, it claimed that abscisic produced in 

plant tissues is transferred to the seeds (Seo and 

Koshiba, 2011). Identification of transporters that 

facilitate ABA,  Guard cells are the site of action 

where the abscisic acid uptake into the cell and ABA 

export from vascular tissue, which is the production 

site of abscisic acid (Kuromori et al., 2018; Seo and 

Koshiba, 2011). At the root apex, abscisic acid can 

migrate laterally (Pilet, 1975). According to Hartung 

and his colleagues, abscisic acid is a  stress signal 

hormone that travels from the root toward the xylem 

(Hartung et al., 2002). Global effects on plants are 

caused by ABA transfer between cells and organs 

(Ikegami et al., 2009), it is discovered that during 

water shortages, the ABA travels from leaves to 

roots. Abscisic acid can only accumulate when roots 

and leaves both are subjected to restricting water 

independently. Additional research has validated that 

abscisic acid is produced in the leaves and then 

transferred to other parts (Zhang et al., 2018). 

Therefore, an essential component of ABA activity 

in plants' overall systemic stress responses is the 

movement of the abscisic acid across organs, cells, 

and tissues. 

ABA Biosynthesis pathway 

The mechanism of abscisic acid production was 

revealed in part by ABA-deficient mutants. Mutant 

deficiency in the biosynthesis of ABA was found in 

a variety of plant species, including Arabidopsis, 

tomato (Nicotiana tabacum), maize (Zea mays), 

tobacco (Nicotiana tabacum), barley (Hordeum 

vulgare), and potato (Solanum tuberosum), due to 

their early seed germination and the plants’ wilted 

appearance. Profiling of ABA biosynthetic 

intermediates and feeding assays utilizing these 

mutants revealed a main route for ABA production. 

First, the molecular identity of impacted genes was 

established. These investigations revealed that the 

"indirect" mechanism of  C40 carotenoid precursor 

cleavage, xanthoxin to ABA through ABA-aldehyde 

intermediate conversion followed by two steps, 

results in the synthesis of the ABA in higher plants 

(Finkelsteina and Rockb, 2002; Schwartz et al., 

2003; Seo and Koshiba, 2002; Taylor et al., 2000). 

The discovery that mevalonate is converted in the  

IPP for sterol synthesis in the cytosol, but terpenoid 

biosynthesis in chloroplast employs IPP synthesized 

from glyceraldehyde phosphate and pyruvate, one of 

the two significant breakthroughs in ABA 

biosynthesis (Rohmer, 1999; Rohmer et al., 1993).  

The second innovation was using biosynthetically 

labeled carotenoids to acquire concrete proof that 

carotenoids transform into ABA by cell-free systems 

(Cowan and Richardson, 1993; Milborrow and Lee, 

1997; Richardson and Cowan, 1996). The oxidation 

of antheraxanthin and zeaxanthin to violaxanthin, 

which takes place in the plastids, is the first step 

more specifically related to the ABA production 

process. The molecular identity of Zeaxanthin 

epoxidase (ZEP) was originally discovered in 

tobacco, catalyzing this process (Marin et al., 1996). 

Violaxanthin undergoes several structural changes 

before becoming 9-cis-epoxycaroteniod. NCED (9-

cis-epoxycarotenoid dioxygenase) oxidatively breaks 
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down important epoxy carotenoid 9-cis neoxanthin 

to produce the C15 intermediate xanthoxin.  The 

resultant xanthoxin is moved towards the cytosol, 

where it experiences a step reaction with ABA-

aldehyde to become abscisic acid (Cheng et al., 

2002; González-Guzmán et al., 2002; Raz et al., 

2001; Rook et al., 2001). The first specific ABA 

biosynthesis inhibitor, Abamine, has been created, 

developed, and patented. This allows for the control 

of the endogenous abscisic acid levels. (Awan et al., 

2017; Dejonghe et al., 2018). Synthesis: All cells 

have chloroplasts and amyloplasts (Bhatla et al., 

2018). Precursor: 40-C carotenoid 

intermediates(Manzi et al., 2015). Locations: 

Plastids and cytosol(Dong et al., 2015; Ma et al., 

2018). Pathways: Isoprenoid Pathway 

(IPP)(Milborrow, 2001; Wani and Kumar, 2015). 

 
Fig:1 Abscisic acid (ABA) Biosynthesis in the plant, Pathway starting from IPP to ABA. 

 

Mechanism of ABA biosynthesis: Amyloplast and 

chloroplast are both plastids that contain chlorophyll 

(Borowitzka, 1976; Chloroplast; Sadali et al., 2019). 

It is known as amyloplast, which retains starch. 

(Borowitzka, 1976; Solymosi and Keresztes, 2012). 

ABA's precursor is C40 Zeaxanthin (Duckham et al., 

1991; WAN, 2004). Zeaxanthin produces and 

synthesizes the ABA hormone Abscisic acid (Iuchi 

et al., 2001). The initial synthesis stage of the ABA 

takes place in plastids, while in the cytosol, the latter 

stage occurs (Dong et al., 2015; Tarkowská and 

Strnad, 2018). Two organelles are involved: plastids 

and cytosol(Jarvis and López-Juez, 2013). IPP is the 

route involved in generating ABA (isoprenoid 

pathway)  Zeazanthin is the starting point because it 

is ABA's predecessor. Rather than Neoxanthin C40, 

40-Carbon Precursor is transformed into 

Violaxanthin C40 (Seo and Marion-Poll, 2019). All 

three intermediates are formed in the plastids. After 

forming, neoxanthin diffuses into the plastid and 

cytoplasm, transforming it into xanthoxin C15, a 15-

carbon intermediate (Xu et al., 2013). ABA is also 

15-Carbon compound (Dobrev and Vankova, 2012; 

Shah et al., 2022; Taylor et al., 2005). It suggests 

that Xanthoxin will aid in synthesizing and 

manufacturing ABA (Parry and Horgan, 1991; Seo 

and Koshiba, 2002; Xiong and Zhu, 2003). 

Xanthoxin is transformed into ABA aldehyde C15, 

ultimately into ABA (Benderradji et al., 2021; Jia et 

al., 2022; North et al., 2007; Taylor et al., 2000). 

Aldehydic group is therefore removed to create 

ABA, which is once more a 15-Carbon compound 

(Milborrow, 2001; Parry and Horgan, 1991). Final 

step is catalyzed into the cytosol (Ma et al., 2018; 

Seo and Koshiba, 2011). 

 Locations and timing of Abscisic acid 

biosynthesis: 

ABA is produced synthetically in almost all plant 

parts, including the stems, leaves, roots, and flowers 

(Jiang and Hartung, 2008). ABA-glucose-ester, an 

inactive form, is produced when glucose is 

conjugated to uridine diphosphate 

glucosyltransferase and stored in mesophyll 

(chlorenchyma) cells. In reaction to abiotic stress, 

the chlorenchyma discharges salt stress, water, heat, 

and cold (Zhang et al., 2021). When plant tissues dry 

out,  roots come into contact with compacted soil 

(DeJong-Hughes et al., 2001). Green fruits are 

synthesized at the start of the winter season (Bhatla 

et al., 2018). synthesized in developing seeds to 

create dormancy (Ali et al., 2022; Gu et al., 2010; Le 

Page-Degivry et al., 1990). Rapid mobile movement 

within the leaf makes it possible for the phloem to 

reach the roots from the leaves (Hoad, 1995; Jiang 

and Hartung, 2008). Lateral root development is 

altered through root accumulation, improving stress 

response (Duan et al., 2013). Accumulation of 

abscisic acid can hasten lengthening of the root hair 

(Zhang et al., 2019). Almost all cells with 

chloroplasts or amyloplasts generate ABA (Howitt 

and Pogson, 2006; Li and Yuan, 2013). When under 

stress, ABA is produced in the roots and transferred 

towards the leaves, but leaves can also synthesize 

ABA (Kuromori et al., 2018; Thompson et al., 

2007). 

IPP
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N
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VIOLAXANTHI
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Functions of ABA Plants 

An optically active sesquiterpenoid ABA 

(C15H20O4), asymmetric carbon of atom at position 

C-1 (Cutler et al., 2010).  The primary controllers of 

the development and plant growth are 

phytohormones, and to abiotic stress, the mediator's 

responses (Sreenivasulu et al., 2012). Absicsic acid 

(ABA), one of many phytohormones, is an important 

regulator that coordinates a variety of tasks in plants 

and resistance to plants under environmental stresses 

(Finkelstein, 2013; Wani and Kumar, 2015), 

Enabling plants to adjust the various stress 

conditions. When the environment is hostile, ABA 

levels in plants rise through ABA biosynthesis. (Ng 

et al., 2014) 

In the past, Abscisic acid was formerly thought a 

factor in abscission (Schwartz and Zeevaart, 2010), 

which is how the name was given. Based on current 

knowledge, only a few plants are known to exhibit 

this. Moreover, ABA-mediated signaling is essential 

for plants to respond to abiotic stress and plant 

diseases (Milborrow, 2001; Nambara and Marion-

Poll, 2005; Pérez-Clemente et al., 2013). Several 

plant pathogenic fungi also synthesize ABA, 

although they do it in a different way than plants do 

(Lievens et al., 2017; Siewers et al., 2004; Spence 

and Bais, 2015). Abscisic acid contributes to the 

signaling of nutrients by modulating nitrate's 

controllable effects on seedlings' root branching 

(Signora et al., 2001). More recently, it has become 

evident that hormonal signaling and nutrient-based 

interactions interact significantly(Krouk et al., 2011). 

Such as concentrations of nitrate influence signaling, 

auxin transport, cytokinin, and ethylene production. 

Cytokinins, auxin, ethylene, and the ABA all 

mutually affect nitrogen intake and assimilation. 

This results in a cycle where nutrients govern 

hormone levels, controlling growth and nutrient 

uptake. Auxin, cytokinin, and ABA signaling 

interactions, as well as soil nitrogen and phosphate 

levels, all have a role in controlling root branching, 

which directly influences availability to nutrients of 

soil (Brady et al., 2003). 

In reaction to the lower the potential of soil water  

(related to the dehydrated soil), Also in the roots the 

ABA is produced (Munns and Sharp, 1993). Any 

other circumstances that could put the plant under 

stress. ABA quickly changes the stomatal guard 

cells’ osmotic potential in leaves, causing stomata to 

close and guard cells to shrink (Mishra et al., 2006). 

Under the low water supply, the abscisic acid-

induced stomatal closure prevents further leaf loss of 

water by reducing vaporization (water evaporates 

from the stomata). Based on leaf area, a strong linear 

association between the Stomatal resistance 

(conductance) and the leaves' ABA content was 

discovered (Steuer et al., 1988). ABA inhibits seed 

germination in opposition to gibberellin (Ye and 

Zhang, 2012). Additionally, ABA reduces seed 

dormancy loss (Sano and Marion-Poll, 2021). Plants 

is sensitive or oversensitive to abscisic acid display 

abnormalities in germination and seed dormancy 

(Daszkowska-Golec et al., 2013; Feng et al., 2014; 

Huang et al., 2016), Stomatal regulation(Pei et al., 

1998) and further mutants have dark or yellow leaves 

that have reduced growth. These mutations 

demonstrate the importance of ABA in early embryo 

development and seed germination. Additionally, 

ABA has different concentration-dependent effects 

on primary root growth, promoting the growth at 

nanomolar concentrations while inhibiting it at 

micromolar concentrations. Mechanically, the 

promotion has been linked with the differentiation of 

repressed stem cells and decreased cell division in 

the quiescent center (QC), which maintains the 

meristem and promotes growth (Zhang et al., 2010). 

Most studies above concentrate on how high abscisic 

acid levels impede growth. However, even plants 

with enough water show limited development, 

indicating that low abscisic acid levels in plants 

without stress encourage growth. Studies on maize 

and tomatoes show the failure to suppress ethylene 

synthesis causes the limited growth of abscisic acid-

deficient plants, demonstrating yet other antagonistic 

interaction between ethylene and ABA (Sharp et al., 

2000; Spollen et al., 2000) 

Low temperature affects the ABA production in 

plant 

The ability of ABA to modulate responses to 

environmental challenges like cold, salt, and 

dehydration during vegetative growth plays a crucial 

role(Brandt et al., 2012; Qin et al., 2011; 

Yamaguchi-Shinozaki and Shinozaki, 2006). 

Compare all stresses, and all these stresses cause 

oxidative stress and cellular osmotic, however these 

have different effects, and as a result, proper 

reactions are not the same. Abscisic acid is also 

involved in the response to hypoxic stress caused by 

flooding, which lowers the levels of ABA-flooded 

plants’ shoots and the submerged tissues (Hsu et al., 

2011). Plants increase downstream gene expression 

under low-temperature conditions via ABA-

dependent and ABA-independent ways. In the 

Arabidopsis, the expression level abscisic acid-

responsive transcript factors ABF4 and ABF1 was 

prompted under low-temperature conditions(Choi et 

al., 2000). Two signaling pathways are ABA-

independent and ABA-dependent, providing a 

complex arrangement of interactions, in a shown 

manner by a contrast expression of stress-induced 

gene in response mutants and ABA production 

(Brandt et al., 2012; Cutler et al., 2010; Yamaguchi-

Shinozaki and Shinozaki, 2006). A short photoperiod 

with a low temperature 10 °C in some varieties of 

grasses and trees increases a plant's freezing 

tolerance or cold acclimation over time (Ensminger 

et al., 2006; Malyshev et al., 2014). This could 

previously explain the finding that abscisic acid 

enhanced roots' ability to tolerate hypoxic stress but 

not in the shoots(Ellis et al., 1999). Winter annuals' 
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freezing tolerance rises by 10°C during this phase, 

spring annuals' by 2-8°C, and tree verities' by 20-

200°C (Gusta et al., 2005; O'Brien et al., 2020). 

Exogenous ABA administration significantly 

enhanced proline levels and soluble sugar, which 

improved the retention of water (Deng et al., 2005; 

Huang et al., 2015) and decreased peroxidation of 

membrane lipid, effectively treating membrane of 

the cell damage (Huang et al., 2015; Zhou and Guo, 

2005) as well as enhanced photosynthesis(He et al., 

2008). 

 During the plants development and growth, abscisic 

acid, a crucial phytohormone that controls numerous 

physiological and biochemical processes, plays an 

important part in stress tolerance (Fujii et al., 2009; 

Kim et al., 2016; Verslues and Zhu, 2005). 

According to an earlier study under cold stress in 

various plants, plants experience an ABA higher 

endogenous level (Li et al., 2016; Mantyla et al., 

1995; Zhang et al., 2012). An increase in root shoot 

ratio effects from slightly raised ABA levels 

throughout the plant indicates mild water stress 

situations. According to the moisture gradients, these 

roots show positive "hydrotropism" (Moriwaki et al., 

2013). The "core signaling pathway" is how ABA 

controls this reaction(Antoni et al., 2013). 

Exogenous abscisic acid therapy also increase plant 

cold tolerance (Fu et al., 2017; Kim et al., 2016; 

Kumar et al., 2008). 

Changes in solute leakage, membrane fluidity, 

dysregulation of metabolic reactions, and damage in 

membrane caused by changes in enzyme properties 

are all symptoms of cold stress. An alternation of 

physiochemical characteristics of the important 

cellular elements like enzymes and membrane lipids 

describes cold stress. It ultimately produced reactive 

oxygen species (Welti et al., 2002). Since it occurs at 

the end of leaf development, cold-encouraged 

senescence in leaf is closely measured on different 

levels and aids in acclimatization. (Masclaux-

Daubresse et al., 2007). Expression of the Abscisic 

acid biological synthesis genes selectively activated 

via cold stress in reproductive organs (Huang et al., 

2022; Shi and Yang, 2014; Thakur et al., 2010).  

Abscisic acid is produced when the plant is under 

strain (Xiong and Zhu, 2003). Benzoic acid regulates 

several particular stress-responsive genes, ABA, an 

important stress hormone in plants, is implicated in 

the low-temperature response (Shi and Yang, 2014). 

Abscisic acid is a key stress hormone in the  plants 

involved in cold stress responses by regulating 

specific stress-responsive genes (Heidarvand and 

Maali Amiri, 2010; Shi and Yang, 2014). In terminal 

buds, ABA is generated in anticipation of winter. As 

a result, plant growth is slowed, and leaf primordia 

are instructed to build scales to cover dormant buds 

during the colder months. Additionally, ABA 

prevents primary and secondary development in the 

vascular cambium, allowing the cells to adapt to the 

winter's cold by preventing cell division (Donno et 

al., 2015). 

Conclusion 

Studies of abscisic acid biological synthesis, ABA 

transportation throughout plants, ABA function, and 

cold stress effect on the ABA. In this study, we 

understand the biological synthesis mechanism of 

Abscisic acid in plants from C40 to C15. ABA levels 

are used to explore the ABA's function in 

development. These investigations have 

demonstrated that endogenous Abscisic acid plays a 

significant role in the induction of dormancy, 

prevention of germination, and regulation of the 

stomata. There are independent and redundant 

processes, several of which influence sensitivity to 

another signal, and mediate ABA signaling. 

However, under low temperature, ABA produced in 

apical buds also play an important role in plant 

growth and regulation. Under stress, production of 

the ABA increased. A biology system will be 

necessary to understand how these pathways are 

interrelated. 
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