
 Journal of Life and Social Sciences 
eISSN: 3006-2675  

www.bbasrjlifess.com 

J. Life Soc. Sci, 2023; Volume, 2: 18 

 

1 
 

 

  Review Article                                                                                                         Open Access 

PHYSIOLOGICAL, MORPHOLOGICAL AND PHYTOCHEMICAL RESPONSES OF MAIZE TO 

ABIOTIC RESPONSES  

ASHRAF M* 

Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab 

P.O.Box.54590, Lahore, Pakistan 

*Correspondence author email address:  muzammilashraf9095140@gmail.com      

 (Received, 14th January 2023, Revised 8th December 2023, Published 16th December 2023)  

Abstract This review paper thoroughly analyses maize's morphological, physiological, and phytochemical responses 

to different abiotic stressors. As a staple cereal crop of global importance, maize has several challenges that 

significantly impact its growth and yield, including salinity, drought, and extreme temperatures. Climate change will 

generally impact plants' abiotic stress tolerance mechanisms, and maize specifically, despite many unanswered 

questions. Despite this, it is still impossible to draw wide conclusions because plants react differently to various 

stresses at different times. The review synthesizes current knowledge on the morphological adaptations, encompassing 

changes in root architecture and leaf morphology, as strategies maize employs to navigate adverse environmental 

conditions. Additionally, the article examines the physiological responses of maize, shedding light on mechanisms 

that enhance stress tolerance, including adjustments in water use efficiency, pH and the activation of cellular 

protective pathways. Furthermore, the review delves into the dynamic alterations in phytochemical profiles, 

highlighting maize's capacity to synthesize secondary metabolites as part of its adaptive arsenal. This comprehensive 

exploration of maize's responses to abiotic stressors contributes valuable insights for researchers, breeders, and 

policymakers working towards developing resilient maize varieties and sustainable agricultural practices in an ever-

changing environment. 

[Citation: Ashraf, M. (2023). Physiological, morphological and phytochemical responses of maize to abiotic 
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Introduction  

Crops provide 80% of humans' food, with cereals 

making up half of the world's food production. 

(Langridge and Fleury, 2011; Salika and Riffat, 

2021). A major annual cereal crop in the world, Zea 

mays L., also called corn or maize, is a member of the 

family Poaceae(Rouf Shah et al., 2016). Maize (Zea 

mays L.) originated between 7,000 and 10,000 years 

ago from the teosinte (Zea mays L. spp Mexicana)  in 

the Western Hemisphere (García-Lara and Serna-

Saldivar, 2019). Native Americans grew maize on a 

large scale(For example, in North Dakota, it was the 

first crop) (Benson, 2011; Hallauer and Carena, 2009) 

in the United States between 1600 and 1700 (Hallauer 

and Carena, 2009). Maize (Zea mays L.) is grown 

worldwide in diverse environments(Du Plessis, 

2003). After wheat and rice, maize is The world's 

most significant cereal crop (Panda, 2010). Corn is 

called the "Queen of Cereals" dueto its high 

productivity(Kiran et al., 2018; Lone et al., 2021; 

Sravani et al., 2021). The main purposes of maize 

cultivation are grain, fodder, industrial processes, and 

various other products(Abdelaziz, 2020; Dinesh et al., 

2018; Panda, 2010). Maize is a renewable fossil fuel 

substitute due to bioethanol production (Mohapatra et 

al., 2019; Zabed et al., 2017). Comprehending the 

effects of climate change on this staple crop's 

development and growth is essential to understanding 

maize yield. Abiotic stressors, including salinity, 

nutrient shortage, temperature extremes, and drought, 

are considered fundamental components of the 

environment that reduce the overall production of 

maize. According to recent research, the two most 

significant climate variables are temperature and 

precipitation; radiation is another important factor 

influencing its yield (Salika and Riffat, 2021; Xu et 

al., 2016).  

 Recently, extremes in temperature, droughts and 

waterlogging have significantly decreased maize 

growth and yield (Ahuja et al., 2010; Prasanna, 2016; 

Ren et al., 2014). 25–30% of maize is lost because of 

drought or waterlogging (Kaur et al., 2021; Lone et 

al., 2018; Srivastava et al., 2010). Mostly used in 

poultry diets across the globe, including India, it is the 

source of energy because of its high energy content, 
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palatability, pigment content, and essential fatty acid 

content. Eggs yolks, poultry fat, and skin are naturally 

colored yellow, so yellow-kerneled cultivars are the 

best choice for feeding chickens because they are 

abundant in β-carotenes and xanthophylls (Kaul et al., 

2019). Effective global measures must be 

implemented to enhance the yield per hectare of 

highly demanded crops and develop crops that are 

tolerant of harsh environmental circumstances. Maize 

is the most sought-after crop because it can be 

cultivated into sophisticated and resilient varieties to 

address the issues with global food security (Vinocur 

and Altman, 2005). To meet the demands of the 

expanding human population and adapt to the current 

climatic conditions, maize varieties must have 

improved resistance to abiotic stresses, particularly 

those related to heat and drought(Salika and Riffat, 

2021). This means that the main focus of the current 

study will be on how maize responds to various 

abiotic stresses and climate change in terms of 

morphology, physiology, and photochemistry. Maize 

contains fat 4.57g (Ujong et al., 2023), protein 8.84% 

(Mandal et al., 2023), fiber 2.15g (Alexandru et al.), 

carbohydrates 71.88g (Bariw et al., 2020; Ujong et al., 

2023), moisture 10.23% (Bariw et al., 2020), ash 

2.33% (Tankem et al., 2023), phosphorus 0.348g 

(Mandal et al., 2023) and minerals 1.5g (Abbas et al., 

2021; Rouf Shah et al., 2016). 

Zea mays and Abiotic stress 

Annual crop grain yields are decreasing globally at an 

accelerated rate due to abiotic stressors like drought 

and nutrient shortages(Hossain et al., 2021; Mueller et 

al., 2012). When analyzing how climate change 

affects crops, maize is most adversely affected (Bassu 

et al., 2014; Kang et al., 2009; Khan et al., 2019). The 

main environmental disturbances that harm global 

maize production are salinity, nutrient shortages, 

droughts, and extremely high or low temperatures 

(Ahuja et al., 2010; Salika and Riffat, 2021). 

Furthermore, some studies suggest that as 

temperatures rise in the world's major corn-producing 

regions, the maturity period may shorten (Sánchez et 

al., 2014; Zhao et al., 2017), While rising 

temperatures may cause changes in metabolism that 

result in a decrease in the absorption of carbon, which 

in turn causes a decline in pollination and grain set 

(Moriondo et al., 2011).  The severe climate change 

scenario is expected to reduce corn yields by 10–20% 

by the end of the 21st century, even when maize 

receives all the water it requires (Xu et al., 2016). 

Simultaneously,  world's agricultural system needs to 

produce 70% of the food required to feed a world 

population expected to reach 9 billion by 2050 

(Rahman, 2016; Searchinger et al., 2014). Therefore, 

plant breeders continue to develop crops with more 

yield security in recent production systems, such as 

corn, by using genetic concepts and biotechnology 

techniques (Habben et al., 2014) All possible 

responses that corn might have to different abiotic 

stressors are listed in Figure 1.  

 

                                                   

 
Figure: 1 Features of Abiotic Stressors in Maize and Their Reactions 

   Responses of the Maize Morphology to the 

Abiotic Stress                                       

More diverse morphogenic responses are seen in 

plants in response to abiotic stressors (Potters et al., 

2007). Because of its poorly developed root system 

and larger transpiration surface area, maize is 

generally thought to have poor drought tolerance 

(Camacho and Caraballo, 1994).  The maize plant's 

aerial section exhibited most of its responses to the 

combined abiotic stress(Vescio et al., 2020) and its 
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reproductive organs, most likely with the intention of 

breeding. To our knowledge, no data is accessible 

regarding how the combined heat stress and drought 

affect the maize root system (Hu et al., 2015). 

Considering that individual types of maize roots, 

including nodal and lateral postembryonic roots, and 

primary and seminal embryonic roots (Hochholdinger 

et al., 2018), have different reactions to external 

stimuli and may serve as a "source" for stress 

adaptation. Different responses of the different kinds 

of roots to drought stress(Hund et al., 2008; Zhan et 

al., 2015), allelochemicals(Abenavoli et al., 2004; 

Lupini et al., 2016), Phosphorus deficiency(Rubio et 

al., 2004), and to the combined drought stress and N 

deficiency reported (Lynch, 2013). While the plant's 

ability to control leaf growth is maintained in natural 

conditions by inadequate root development, which is 

highly correlated with soil temperature, the rate of leaf 

appearance under cold stress was found to be roughly 

three times slower than that of maize grown at normal 

temperature(Farooq et al., 2009). 

It has been noted that there is no discernible decrease 

in root growth in maize under water stress (Cai et al., 

2017), larger root lengths(Ali, 2016) and with smaller 

lateral roots in maize that is more resistant to drought 

(Ali et al., 2017; Cai et al., 2017). When a drought 

occurs, maize plants frequently adapt their root 

architecture to search for water in deeper soil layers 

(Hammer et al., 2009). Knowing better about the 

changes in the root dimensions that occur during 

droughts or any other type of stress is important. 

Hybrid maize seedlings under low-temperature stress 

exhibit markedly altered root morphology, with larger 

seminal roots, thicker axes, and swollen roots behind 

the tip(Farooq et al., 2009).  decrease in growth 

parameters, including plant height, photosynthesis, 

and fresh and dry shoot weight (Ali et al., 2015; 

Aslam et al., 2013). Changes in maize leaf 

morphology due to high temperatures include a 

reduction in leaf size and shape (Ong and Baker, 

1985). The weight of maize seedlings is decreased by 

osmotic stress(Moharramnejad et al., 2015). Crop 

yield losses are the direct or indirect result of all these 

detrimental effects on the morphology of the maize 

plant. Grain yield decreased when maize plants were 

subjected to water deficit conditions for longer than 

12 days during grain filling and flowering (Li et al., 

2018; Mangani et al., 2018). Additionally, during 

chilling, it has been discovered that significant 

alterations in tassel morphogenesis, as well as a 

reduction in the number of spikelet pairs and tassel 

branches, occur in maize, which results in losses in 

grain yield (Salika and Riffat, 2021; Thakur et al., 

2010).  

Responses of Maize Physiology to Abiotic Stress 

There are wide differences in how low temperatures 

affect corn physiology (Wijewardana et al., 2016). 

Thermal thresholds for the ideal morphological 

development or physiological and biochemical 

activity in maize decrease metabolic and growth 

processes, damaging cells and tissues and reducing 

the genetically determined yield potential (Ali et al., 

2013; Ali et al., 2016; Ali et al., 2010a; Cairns et al., 

2012; Farooq et al., 2009). Within corn, A decrease in 

turgor pressure and cell elongation can result from 

dehydration of the cells(Kutschera and Niklas, 2013). 

Osmotic stress caused by salinity in maize can alter 

the plant's ability to move water (Farooq et al., 2015). 

Furthermore, changes in pH are caused by low 

temperatures across thylakoid membranes (Pasini et 

al., 2005). However, it was shown in a previous study 

that When an artificial electron acceptor was used to 

penetrate the leaves of maize, the light reaction of 

photosynthesis was unaffected by temperature 

(Fracheboud and Leipner, 2003; Salika and Riffat, 

2021). In corn, Damage to cellular membranes can 

result from high temperatures (Ali et al., 2011; Ali et 

al., 2014; Ali and Malik, 2021; Tiwari and Yadav, 

2019). Adding different kinds of suitable organic 

solvents is another important and widespread 

physiological stress response in plants (Bohnert and 

Shen, 1998). According to earlier research, a few 

solutes, including glycine betaine, sorbitol, mannitol, 

proline, and trehalose, function as osmoprotectants in 

water-stressed environments and support plant growth 

and development (Hadiarto and Tran, 2011; Slama et 

al., 2015). Maize may change metabolism to deal with 

stressful situations (Ali et al., 2010b; Iqra et al., 2020; 

Ramazan et al., 2022). Maize activates antioxidant 

systems to prevent cellular damage and scavenge 

reactive oxygen species (ROS) (Majid et al., 2017; 

Naveed et al., 2012; Prasad, 1996; Sarwar et al., 

2021). For maize seedlings to adapt to oxidative stress 

brought on by chilling, they must be able to increase 

the synthesis and activity of various antioxidant 

enzymes, such as catalase (CAT), peroxidases (POD), 

and superoxide dismutase (SOD) (Hussain et al., 

2020). In maize, osmoprotectants such as proline can 

accumulate to maintain cellular turgor and prevent 

dehydration (Zulfiqar et al., 2020). Additionally, 

abscisic acid (ABA), one of the plant growth 

regulators necessary for the plant's reaction to drought 

stress, is more abundant under osmotic stress 

(Muhammad Aslam et al., 2022; Rajasheker et al., 

2019; Sarwar et al., 2022). However, Plant growth 

regulators are widely acknowledged to communicate 

and affect one another, and that interaction is 

necessary for plants to resist abiotic stress. Therefore, 

more research is required to understand the various 

plant growth regulators that completely enhance 

maize's resistance to abiotic stress. 

Response of maize phytochemicals to abiotic 

stressors 

Plants naturally contain bioactive chemicals called 

phytochemicals, which are good for human health and 

may reduce the chance of developing severe chronic 

illnesses(Xiao and Bai, 2019). Maize is an essential 

source of several significant phytochemicals, such as 

phytosterols, phenolic compounds, and 

carotenoids(MANN; Saeed and Saeed, 2020; Serna-
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Saldivar et al., 2015; Zubair et al., 2016). Climate 

factors also influence the amount and make-up of 

protective phytochemicals, critical for resistance to 

biotic and abiotic stressors(Vaughan et al., 2018). 

Maize produces a range of resilience compounds in 

response to environmental stimuli, including 

flavonoids, cell wall components like lignin, and 

defense-related proteins(Vaughan et al., 2018). In 

addition to age and plant organ variation, 

benzoxazinoid concentration and composition 

amongst maize genotypes are also affected by weather 

patterns linked to climate change(Cambier et al., 

2000; Salika and Riffat, 2021). It is well known that 

warmer temperatures promote maize growth and 

development(Sunoj et al., 2016), which might 

inadvertently alter the concentration of benzoxazinoid 

in maize tissues. Moreover, it is commonly 

recognized that the amount of nitrogen in the soil has 

a major influence on the potential for benzoxazinoid 

production (Brevik, 2013). It is believed that 

temperature, soil moisture, humidity, and light 

intensity are all factors in creating volatile organic 

compounds (VOCs) in maize. It's interesting to note 

that when soil moisture content varies, maize releases 

volatiles. Additionally, plants release more volatiles 

into dry soil than wet soil(Gouinguené and Turlings, 

2002). A recent review provided detailed information 

on the possible impacts of climate change on the 

production of volatile organic compounds (VOCs) 

from various plant sources(Peñuelas and Staudt, 

2010). An interaction between ethylene and jasmonic 

acid (JA) results in an elevated rate of terpenoid 

phytoalexin biosynthesis in maize stalks(Liu et al., 

2023). Still, in maize roots, it is induced by applying 

ABA exclusively to the underground portions (Salika 

and Riffat, 2021), demonstrating the diverse 

regulatory mechanisms across the different plant 

organs. It has been demonstrated that the buildup of 

terpenoid phytoalexins in maize is impacted by both 

drought and elevated [CO2] (Vaughan et al., 2015; 

Vaughan et al., 2016) Moreover, the production of 

salicylic acid (SA) and JA is compromised when 

maize plants grow at high [CO2] levels(Tahjib-Ul-

Arif et al., 2018; Wani et al., 2017). Furthermore, 

further study is required to fully understand the 

intricate processes by which crop plants produce 

volatile organic compounds (VOCs) in reaction to 

various stressors. This scenario occurs frequently in 

nature. 

Abiotic stress coupled with climate change: A 

problem for maize 

Plant growth, development, and productivity can be 

adversely influenced by non-living environmental 

elements known as abiotic stresses(Mosa et al., 2017). 

Increasing temperatures due to climate change can 

lead to heat stress, adversely affecting maize 

growth(Deryng et al., 2014); the overall yield of 

maize, the development of kernels, and the success of 

pollination during the reproductive stage can all be 

negatively impacted by high temperatures(Wang et 

al., 2021). Frost can harm immature plants and 

develop tassels in maize, which lowers 

yield(Miedema, 1982). Maize is sensitive to 

dehydration, and inadequate water availability during 

critical growth stages can reduce yields (Comas et al., 

2019; Jain et al., 2019). Storms, hurricanes, and floods 

are more frequent and powerful climate events that 

can harm maize crops, resulting in lower yields and a 

higher vulnerability to disease (Elias et al., 2019). 

Abiotic stressors include high concentrations of 

ultraviolet B and ultraviolet A radiation, temperature 

extremes, Water as a drought-causing stressor, 

submergence and flooding, massive concentrations of 

Na+, sharp variations in the amount of essential 

nutrients, air pollutants (ozone, sulfur dioxide) that 

cause salt stress, mechanical stressors, heavy metal 

presence, and other less frequent variables, as well as 

chemical stressors like acidic pH (Suzuki et al., 2014). 

Abiotic stress has been shown to significantly affect 

crop productivity in the last few decades, both in 

terms of frequency and intensity, in addition to 

extreme weather (Venkateswarlu and Shanker, 2011). 

Climate change will, as expected, have the greatest 

effect on crop productivity and agricultural wealth; 

this impact will particularly noticeable in developing 

nations situated at lower latitudes(Wheeler and Von 

Braun, 2013). Therefore, It is necessary to develop 

pathogen-resistant and climate-resilient varieties of 

maize to meet the increasing demands of the world's 

expanding human population. Here are some types of 

biotic and abiotic stress that impact maize 

productivity. 

 

  

       Weevil                                              Sugarcane Mosaic  

         Aflatoxin maize                                  Drought 
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         Bacterial stalk rot                               Ear Rot 

      Leaf Blight                                        High temperature 

      Corn Borer                                        Flooding  

        Fig. 3 Stress factors, both biotic and abiotic, that affect maize productivity 

Conclusion 

Climate plays a significant impact on plant growth 

and agricultural productivity. A suitable climate is 

necessary to ensure proper soil moisture levels during 

these periods, as maize is especially sensitive to water 

stress. The morphological, physiological, and 

phytochemical reactions of maize to abiotic stressors 

highlight the morphological changes that have been 

noticed, such as adjustments to leaf morphology and 

root architecture in response to environmental 

stresses. Physiological responses demonstrate the 

plant's resistance to unfavorable circumstances. These 

responses include modifications to pH, water use 

efficiency, and stress tolerance mechanisms. 

Moreover, the modulation of phytochemical profiles 

in the crop reveals maize's ability to produce 

secondary metabolites as a defense mechanism 

against abiotic stressors. Therefore, to protect and 

improve maize productivity and the economy in the 

future, a thorough understanding of maize's various 

morphological, physiological, and biochemical 

responses to one or more abiotic stresses concerning 

climatic fluctuations is required. Furthermore, it is 

necessary to comprehend several other significant 

uncertainties, such as canopy and CO2 effects. This 

thorough review would give the scientific community 

a better perspective for upcoming research aimed at 

producing maize at the commercial and industrial 

scale in both quality and quantity efficiently and 

sustainably. 
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